您现在的位置: 通信界 >> 视频通信 >> 技术正文  
 
视频编码新标准H.264中抗误码技术的研究
[ 通信界 / 王俊生 / www.cntxj.net / 2004/11/16 ]
 

王俊生


  1引言

  H.264标准是由运动图像专家组MPEG和ITU下属的视频编码专家组VCEG联合制定的新一代低比特率视频压缩编码标准。与以往的标准相比,它采用了更多的先进技术,使得在同样的码率下运用H.264标准编码可以获得更好的主客观质量。但同时,由于H.264新标准的高效率压缩编码,压缩视频流在传输过程中对信道误码也更敏感,即使单个突发性错误,也可能严重干扰接收端的正常解码,造成恢复视频质量的急剧下降。为此,H.264新标准采用了多种用于增强压缩视频流抗误码能力的编码技术,以保证恢复视频流的质量,本文对此进行归纳研究。

  2H.264视频编解码标准中抗误码技术的应用同其他视频编解码标准H.263、MPEG-2和MPEG-4一样,H.264标准也是通过多种抗误码技术的联合应用来增强视频流在误码、丢包多发环境(如无线和IP信道)中传输的鲁棒性。与H.263标准相比,H.264新标准中所采用的抗误码技术可分为3类,一类是H.264直接采用的旧标准中效率高、技术成熟的抗误码技术,如图像分割、参考图像选择等技术;第二类是经过改进在H.264标准中得到更好应用的抗误码技术,如帧内编码、数据分割;第三类就是基于H.264标准的全新的视频压缩抗误码技术。在H.264中主要使用了3种新的抗误码技术:参数集、灵活的宏块排列次序(FMO)和冗余片技术。

  第一类抗误码技术在很多现有文献中都有较详细的描述,这里不再介绍,本文仅对上面提及的后两类抗误码技术加以讨论。

  2.1帧内编码

  基于宏块、片(slice)或图像的帧内编码主要用于克服由于误码所导致的参考图像漂移对当前帧的影响,这种抗误码技术在标准H.263中就得到了很好的应用,但在H.264中,帧内编码技术又被赋予了两种新的特性。

  (1)帧内预测

  H.264允许帧内宏块预测,甚至可以利用经预测编码后的痔匦浴T贖.264中利用限制帧内预测编码标志(Constrained Intra Prediction Flag)来标识是否采用了帧内宏块预测,当限制帧内预测编码标志被设置时,表明不采用这种方式的预测,并恢复帧内信息的重同步特性。在参考文献[3]中详细讨论的一个无线环境下的有损率失真优化编码器测试模型中,就通过设置限制帧内预测编码标志取得了较好的效果。

  (2)帧内编码片和IDR片

  对帧内编码,新标准H.264中还采用了两种类型的、仅包含帧内编码宏块的片:帧内编码片和IDR(Instantaneous Decoder Refresh)片。其中,IDR片仅用于构成一个完整的IDR图像,也就是IDR图像中的所有片必须是IDR片,一个IDR片只能作为IDR图像的一部分。在解码器端,当解码完一幅IDR图像后,解码器立即将所有的参考图像标识为“未用作参考”。这样,后续图像被解码时,肢不参考该IDR图像前面的任何图像。每个视频序列的第一幅图像一定是IDR图像。与仅包含帧内编码片的图像相比,IDR图像具有更强的重同步特性。需要注意的是,由于H.264采用了多参考肘码时所参考的图像早于此帧内编码图像时,则即使此帧内编码图像和所有后续图像都是无误码传输的,也无法消除误码扩散所导致的图像漂移。

  2.2数据分割

  数据分割是一种高效的抗误码技术。通常情况下,一个宏块中的所有码元被编码组织在单个的比特串中用于构成片。而数据分割则为每个片生成多个比特串,即多个数据分块,并将片中彼此之间语义相近并有紧密联系的码元组织在一个独立的数据分块中。针对信息的重要程度,对不同的数据分块采用不等的保护措施,保证了恢复视频的质量。

  在H.264中,共使用了3种不同类型的数据分块:头信息、帧内数据分块与?

  (1)头信息

  头信息中包含了本宏块的类型、量化参数和运动矢量。这个数据分块是最重要的,如果它丢失,即使别的数据分块被正确接收到也将不可用,因此在分割重组后,头信息被赋予了最大程度的保护。此数据分块类型在H.264中称为A类分块。

  (2)帧内数据分块

  帧内数据分块也称为B类分块,它承载帧内CBPs和帧内系数。B类分块需要相应片的A类分块可用。与嘱包含肘码器间的同步,相应地,值谋;ちΧ纫沧钋帷A硗猓挥械盇类分块可用时C类分块才可用,但并不需B类分块可用。

  当使用数据分割时,信源编码器将不同类型的码元放入3个不同的比特缓存器中,以生成3种类型的数据分块。同时,调整片的大小,以保证打包最大的数据分块时所生成的包小于MTU(maximum transfer unit)的允许值。也正是出于这个原因,在H.264中是由信源编码器来执行数据分割而不是NAL。

  在解码器中,所有的数据分块都应能有效地用于图像重构。特别地,如果仅仅是帧内或嘱仅是内容信息丢失而已,可以利用先前解码帧很好地进行掩盖。

  2.3参数集

  参数集通常应用在所有的H.264比特流中,它所包含的信息极其重要,它的受损将影响到大量的VCL和NAL单元,被影响的单元即使能正确接收到也不能被正确解码,在H.264新标准中共使用了两种类型的参数集。

  (1)序列参数集,包括与图像序列(定义为两个IDR图像间的所有图像)有关的所有信息,应用于已编码视频序列。

  (2)图像参数集,包含所有属于该图像的片的相关信息,用于解码已编码视频序列中的1个或多个独立的图像。

  多个不同序列和图像的参数集被解码器正确接收后,存储于不同的已编号位置,通过参考每个已编码片片头的存储位置,编码器选择使用恰当的图像参数集,图像参数集中包含1个要使用和参考的序列参数集。

  参数集的灵活使用大大增强了编解码器的抗误码能力。在有误码倾向环境下,使用参数集的关键是,在相应的VCL与NAL单元到达解码器时,确保参数集已可靠及时地到达解码器。最常用的手段就是重复发送,来提高数据可靠到达的机率。这种情况下典型的应用是参数集的传送与VCL NAL共用1个信道。另外,参数集也可以单独使用更可靠的传输机制在带外发送。

  由于采用了可靠的传输机制和性能更好的信道,参数集能被及时可靠地送达解码器端,保证了相应VCL与NAL单元的正确解码。但是,这种方式需要额外的1个信道,以及可靠的传输机制,如果条件许可时,应用这种传输方式能增强编解码器的抗误码能力,但限于网络资源的现状,实际应用中更多的是采用第一种方式来传输参数集。

  2.4灵活的宏块排列次序

  灵活的宏块排列次序(FMO)允许以不同于图像扫描顺序的组织方式将宏块分配给各片,在这种方式中,每个宏块按照宏块配置图固定地分配给一个片,片中的宏块按照扫描顺序被编码,每个片单独传输。若某个片在传输过程中丢失,可以利用其他被正确接收、包含与丢失片中宏块相邻宏块的片来进行有效的误码掩盖。由于在解码器中各个片被独立解码,从而有效地抑制了错误的蔓延,提高了解码的容错力。假定图像足够小刚好分为两个片,此图像中的所有宏块被配置给片0或片1,其中白色的宏块属于片0,而灰色的宏块属于片1。假如在传输中,包含片1信息的包丢失,由于丢失片1中的每个宏块与另一个片0中的宏块在空间上分散相邻,片0中包含大量与片1中宏块相关的信息,利用它就可以对丢失片进行有效的误码掩盖。试验表明,在视频会议应用中,CIF大小的图像,即便丢失率达10%,使用FMO后重构视频的视觉效果也只有专家才能确认它是经过有损传输后的重构视频。使用FMO的代价是它带来的较低的编码效率(因为它破坏了图像内相邻宏块间的预测机制),并且,在高优化环境下,由于预测的难度较大,带来大的时延。FMO有多种模式,从矩形模式到规则的散布模式或完全随机的散布模式。

  2.5冗余片

  冗余片技术,简单地讲就是,在同一个比特流中,编码器除了将片自身中已编码的宏块放置其中外,同一宏块的1个或多个冗余的表示也同时被放置其中,通过利用宏块的1个或多个冗余表示来克服误码造成的不可用片对重构图像的影响。这种技术与基于冗余的传输如包复制有着本质的区别。在包复制冗余传输中,被复制的包和复制包一模一样,而在冗余片技术的使用中,冗余片使用不同的编码参数来编码,从而形成对同一宏块的不同表示。例如,主冗余片可以使用较小的QP来量化编码,因此具有较好的重构图像质量。次要的冗余片可以使用一个较大的QP来量化编码,因而使用较少的比特数,重构质量较粗糙。在解码器中重构图像时,如果主冗余片可用,则仅使用主冗余片而丢弃其余的冗余片。只有当主冗余片在传输的过程中丢失或由于误码等原因而不可用时,其余的冗余片才用于重构图像。这种对主次冗余片不同编码参数的运用,使得冗余片技术在花销最少比特数的情况下,最大限度地保证了重构图像的质量,尤其是在有误码倾向的移动信道或IP信道环境下,采用冗余片技术可显著提高重构图像的主客观质量。

  3结束语

  H.264是ITU-T和MPEG联合制定的新一代低比特率视频压缩编码标准,其中包含了丰富的抗误码技术,为压缩视频流在资源有限的不可靠网络上实时、高效的传输提供了保证。针对新标准抗误码技术的分析和研究可以更好地利用这些技术提高端到端通信的质量,对今后无线和IP视频通信产品的研制与开发有着极其重要的作用和意义。

 

作者:王俊生 合作媒体:《中国有线电视》 编辑:顾北

 

 

 
 热点技术
普通技术 “5G”,真的来了!牛在哪里?
普通技术 5G,是伪命题吗?
普通技术 云视频会议关键技术浅析
普通技术 运营商语音能力开放集中管理方案分析
普通技术 5G网络商用需要“无忧”心
普通技术 面向5G应运而生的边缘计算
普通技术 简析5G时代四大关键趋势
普通技术 国家网信办就《数据安全管理办法》公开征求意见
普通技术 《车联网(智能网联汽车)直连通信使用5905-5925MHz频段管理规定(
普通技术 中兴通讯混合云解决方案,满足5G多元业务需求
普通技术 大规模MIMO将带来更多无线信道,但也使无线信道易受攻击
普通技术 蜂窝车联网的标准及关键技术及网络架构的研究
普通技术 4G与5G融合组网及互操作技术研究
普通技术 5G中CU-DU架构、设备实现及应用探讨
普通技术 无源光网络承载5G前传信号可行性的研究概述
普通技术 面向5G中传和回传网络承载解决方案
普通技术 数据中心布线系统可靠性探讨
普通技术 家庭互联网终端价值研究
普通技术 鎏信科技CEO刘舟:从连接层构建IoT云生态,聚焦CMP是关键
普通技术 SCEF引入需求分析及部署应用
  版权与免责声明: ① 凡本网注明“合作媒体:通信界”的所有作品,版权均属于通信界,未经本网授权不得转载、摘编或利用其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:通信界”。违反上述声明者,本网将追究其相关法律责任。 ② 凡本网注明“合作媒体:XXX(非通信界)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 ③ 如因作品内容、版权和其它问题需要同本网联系的,请在一月内进行。
通信视界
华为余承东:Mate30总体销量将会超过两千万部
赵随意:媒体融合需积极求变
普通对话 苗圩:建设新一代信息基础设施 加快制造业数字
普通对话 华为余承东:Mate30总体销量将会超过两千万部
普通对话 赵随意:媒体融合需积极求变
普通对话 韦乐平:5G给光纤、光模块、WDM光器件带来新机
普通对话 安筱鹏:工业互联网——通向知识分工2.0之路
普通对话 库克:苹果不是垄断者
普通对话 华为何刚:挑战越大,成就越大
普通对话 华为董事长梁华:尽管遇到外部压力,5G在商业
普通对话 网易董事局主席丁磊:中国正在引领全球消费趋
普通对话 李彦宏:无人乘用车时代即将到来 智能交通前景
普通对话 中国联通研究院院长张云勇:双轮驱动下,工业
普通对话 “段子手”杨元庆:人工智能金句频出,他能否
普通对话 高通任命克里斯蒂安诺·阿蒙为公司总裁
普通对话 保利威视谢晓昉:深耕视频技术 助力在线教育
普通对话 九州云副总裁李开:帮助客户构建自己的云平台
通信前瞻
杨元庆:中国制造高质量发展的未来是智能制造
对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 杨元庆:中国制造高质量发展的未来是智能制造
普通对话 对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 对话倪光南:“中国芯”突围要发挥综合优势
普通对话 黄宇红:5G给运营商带来新价值
普通对话 雷军:小米所有OLED屏幕手机均已支持息屏显示
普通对话 马云:我挑战失败心服口服,他们才是双11背后
普通对话 2018年大数据产业发展试点示范项目名单出炉 2
普通对话 陈志刚:提速又降费,中国移动的两面精彩
普通对话 专访华为终端何刚:第三代nova已成为争夺全球
普通对话 中国普天陶雄强:物联网等新经济是最大机遇
普通对话 人人车李健:今年发力金融 拓展汽车后市场
普通对话 华为万飚:三代出贵族,PC产品已走在正确道路
普通对话 共享退潮单车入冬 智享单车却走向盈利
普通对话 Achronix发布新品单元块 推动eFPGA升级
普通对话 金柚网COO邱燕:天吴系统2.0真正形成了社保管