您现在的位置: 通信界 >> 通信终端 >> 技术正文  
 
基于T5743的传感器数据无线通信设计[图]
[ 通信界 / 互联网 / www.cntxj.net / 2011/12/6 11:10:56 ]
 

摘要:无线传感器网络节点是一个微型嵌入式系统,有采集、发送、接收数据等功能,本文以无线通信技术为基础设计网络接收节点,采用RF射频接收芯片T5743的网络接收节点,达到了网络节点数据的短距离接收,并降低接收数据的误码率,实现传感器数据无线通信。

一、引言

在无线传感器网络中的节点通常是一个微型的嵌入式系统,对采集数据、接收数据、处理数据、发送数据等的功能要求各有兼顾,其处理能力、存储能力和通信能力都是对采集的数据进行管理和协同工作,因此传感器网络节点的软硬件技术是传感器网络研究的重点。本文主要是对无线传感器网络节点数据的短距离接收进行设计探讨。

二、接收节点工作原理

基于T5743的传感器数据无线通信设计

无线传感器网络数据接收节点模块主要由接收芯片T5743和MCU微处理器PIC18F6620构成,如图1,发射端采用ATMEL公司的的T5754做为数据发射芯片,与接收芯片T5743相匹配,以一定的发射接收频率和数据传输速率协同工作。接收芯片T5743通过DATA串行双向数据线与MCU微处理器PIC18F6620的I/O口进行通讯,MCU微处理器接收数据时,用DATA_CLK作为同步时钟,微处理器PIC18F6620向接收芯片T5743发送指令时依靠特殊时序来达成数据接收和处理。接收过程用软件控制的方式来进行数据传送和实现对接收芯片T5743的控制,在接收数据之前,微处理器PIC18F6620通过DATA线将MUC内的程序写入接收芯片的配置寄存器里,对接收芯片进行配置,随后等待接收数据;当有数据来时,由接收芯片T5743的LNA_IN端接入,经低噪声放大器放大后送入混频器,使其变换成中频;在中频级,经变换的信号在送入解调器之前被放大和滤波。

三、接收节点芯片

ATMEL的T5743芯片是集成UHF无线电接收模块,带有PLL锁相环结构的接收芯片,采用SO20封装。T5743芯片是为满足低数据率、低成本RF数据传输系统的要求而开发出来的,其数据传输速度为1~10kB/s,编码方式为曼切斯特或双相位方式,可用于接收频率范围为300MHz~450MHz(433.92MHz和315MHz)的ASK数据传输;高灵敏度,全集成VCO,可实现低功耗功能,电源电压4.5V~5.5V;单端RF输出容易与天线或PCB版的印制天线相适配;工作温度范围为-40℃~105℃。

T5743芯片带有一双向串行数据接口DATA,通过DATA芯片可与MCU进行串行通讯,交换信息。它可以工作在2种典型频率433.92MHz和315MHz,由MODE引脚来选择,置高为433.92MHz,置低为315MHz,接收频率在1kB~10kB之间可选,由软件设定。设计中由于采用1MHz中频与前端SAW滤波器相配合实现了高镜像抑制,基于使新型SAW器件,达到了40dB抑制,并能用简单的双向数据线实现与微控制器的通信,利用单独引脚经微控制器实现电源管理。

T5743芯片的RF前端是一个超外差结构,将射频输入信号变换成1MHz IF信号。RF前端由低噪声放大器LNA,本地振荡器LO、混频器和RF放大器组成。LO是由PLL锁相环产生的载波频率,供混频器使用。RF信号经RF输入脚LNA-IN输入,在433.92MHz时输入阻抗为1000Ω/pF,在设计输入网络时首先考虑噪声匹配,适当调整元件值和印制板的分布电感电容与输入端的匹配,达到T5743在高信噪比时灵敏度最高。这样,从RF前端来的信号经全集成4阶IF滤波器滤波,达到334.92MHz的应用,中频的中心频率为lMHz。

设计中解调器的工作方式由寄存器OPMODE设置,逻辑“L”设置解调器为FSK方式;逻辑“H”设置解调器为ASK方式。在ASK方式使用了自动门限控制电路,它将检测参考电压设置在一个能获得好信噪比的适当值上,这个电路也能有效抑制任何类型的带内噪声信号或竞争发射,如果S/N超过10dB即能很好检测出数据信号。在FSK方式下,如果S/N超过2dB就能检测出数字信号。

解调器的输出信号,经数字滤波器滤波后送到数字信号处理电路,数字滤波器的通带与数据信号的特性相匹配。数字滤波器由1阶高通和3阶低通滤波器组成。高通滤波器的截止频率fcu _ DF由公式(1)决定。低通滤波器的截止频率由所选波特率范围(BR-Range)决定,BR-Range在OPMODE寄存器中设定,BR-Range的设置必须与波特率相适应。

基于T5743的传感器数据无线通信设计

无线传感器网络接收节点的数字电路和模拟滤波器的全部定时都是来自一个时钟。这一时钟周期TCLK是从晶体振荡器经分频器得到的,分频次数由MODE引脚端的逻辑状态控制。晶体振荡器的频率是由RF输入信号决定的,它也同时决定了本地振荡器的频率(fLO)。T5743芯片的工作状态是由OPMODE和LIMIT的两个15位RAM寄存器进行设置的,寄存器可由双向DATA口编程。如果寄存器内容由于掉电而改变,这一状态由一个称为复位标识(RM)的输出表示出来,在这种情况下的接收电路必须重新编程。在加电复位(POR)后,寄存器被置为默认模式,如果接收机工作默认模式,不需对寄存器编程。同样,如果接收电路不是在复位方式,就会启动相应的OFF指令编程;如果接收电路处在复位方式,相应的OFF指令编程不会被启动,在DATA脚仍呈现复位标志。

四、接收节点电路

无线传感器网络接收节点芯片T5743是一个高度集成的PLL无线接收模块,能够接收并解调FSK调制的曼彻斯特编码数据,同时通过一个双向数据口将其发送出去。该无线接收芯片通过一个智能的轮询方式使接收节点在大部分时间处于休眠模式,只有在监测到有效传输时,才会结束休眠模式转换为接收模式,并将数据流传送给控制器。这样,可以最大限度地减少能量消耗。图2为无线接收节点电路原理图。

基于T5743的传感器数据无线通信设计

图2中接收芯片的T5743的XTO是参考晶振的出入端,引脚LNA_IN提供RF到LNA输入,设计采用的接收频率为433.92MHz,所以fXTO=6.76438MHz,将MODE引脚设置为高电平,数据时钟周期TCLK为2.0697μs。DATA引脚接到RB0引脚,DATA_CLK引脚接到RB2引脚,POLLING引脚接到RC7引脚,IC_ACTIVE引脚接到RF1引脚,至此完成T5743与MCU微处理器PIC18F6620的连接。

接收芯片的T5743的LF引脚连接一个带宽为100kHz的无源环路滤波器。LNA_GND引脚的电感L为25nH,L是馈电电感,以建立供电DC通路。C7与L一起形成串联谐振电路。LNA_IN引脚连接天线,中间部分为T型匹配网络。

五、数据传输误码率测试

对无线传感器网络接收节点接收数据有效性的测试,必须通过验证系统的性能进行,在一定距离内进行系统通信测试时,判断数据传输的可靠性和有效性。在对网络接收节点的T5743芯片完成输入输出波形和电路逻辑的时序检测后,将无线网络接收节点与PC机相连,改变发射端与接收端之间的距离,测试通讯距离及相应的误码率。设计中将发射端以5kB的数据速率发送20062120133~20062240266均匀递增的测试数据,误码测试程序将接收到的数据与自己生成的数据序列(20062120133~20062240266)同步、对比测得误码率。表1为接收节点的数据误码率测试结果。

基于T5743的传感器数据无线通信设计

在通信距离及通信误码率测试过程中,5m~10m通信距离中外界干扰对系统的影响较小,甚至人为制造的电磁干扰对其通信误码率影响也较小,接收节点能够稳定有效的工作;10m~30m的通信距离,外界的干扰对系统的影响较大,接收节点通信误码率上升,但仍能满足通讯要求,接收节点工作性能出现间或不稳定;大于30m以上系统工作不稳定,通信误码率上升很快,接收节点已不能满足通信数据传输要求。

六、结论

本设计实现了对传感器采集数据的无线接收,在短距离无线通信中能够有效、准确的接收数据,减少误码率的发生。

 

作者:互联网 合作媒体:互联网 编辑:顾北

 

 

 
 热点技术
普通技术 “5G”,真的来了!牛在哪里?
普通技术 5G,是伪命题吗?
普通技术 云视频会议关键技术浅析
普通技术 运营商语音能力开放集中管理方案分析
普通技术 5G网络商用需要“无忧”心
普通技术 面向5G应运而生的边缘计算
普通技术 简析5G时代四大关键趋势
普通技术 国家网信办就《数据安全管理办法》公开征求意见
普通技术 《车联网(智能网联汽车)直连通信使用5905-5925MHz频段管理规定(
普通技术 中兴通讯混合云解决方案,满足5G多元业务需求
普通技术 大规模MIMO将带来更多无线信道,但也使无线信道易受攻击
普通技术 蜂窝车联网的标准及关键技术及网络架构的研究
普通技术 4G与5G融合组网及互操作技术研究
普通技术 5G中CU-DU架构、设备实现及应用探讨
普通技术 无源光网络承载5G前传信号可行性的研究概述
普通技术 面向5G中传和回传网络承载解决方案
普通技术 数据中心布线系统可靠性探讨
普通技术 家庭互联网终端价值研究
普通技术 鎏信科技CEO刘舟:从连接层构建IoT云生态,聚焦CMP是关键
普通技术 SCEF引入需求分析及部署应用
  版权与免责声明: ① 凡本网注明“合作媒体:通信界”的所有作品,版权均属于通信界,未经本网授权不得转载、摘编或利用其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:通信界”。违反上述声明者,本网将追究其相关法律责任。 ② 凡本网注明“合作媒体:XXX(非通信界)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 ③ 如因作品内容、版权和其它问题需要同本网联系的,请在一月内进行。
通信视界
华为余承东:Mate30总体销量将会超过两千万部
赵随意:媒体融合需积极求变
普通对话 苗圩:建设新一代信息基础设施 加快制造业数字
普通对话 华为余承东:Mate30总体销量将会超过两千万部
普通对话 赵随意:媒体融合需积极求变
普通对话 韦乐平:5G给光纤、光模块、WDM光器件带来新机
普通对话 安筱鹏:工业互联网——通向知识分工2.0之路
普通对话 库克:苹果不是垄断者
普通对话 华为何刚:挑战越大,成就越大
普通对话 华为董事长梁华:尽管遇到外部压力,5G在商业
普通对话 网易董事局主席丁磊:中国正在引领全球消费趋
普通对话 李彦宏:无人乘用车时代即将到来 智能交通前景
普通对话 中国联通研究院院长张云勇:双轮驱动下,工业
普通对话 “段子手”杨元庆:人工智能金句频出,他能否
普通对话 高通任命克里斯蒂安诺·阿蒙为公司总裁
普通对话 保利威视谢晓昉:深耕视频技术 助力在线教育
普通对话 九州云副总裁李开:帮助客户构建自己的云平台
通信前瞻
杨元庆:中国制造高质量发展的未来是智能制造
对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 杨元庆:中国制造高质量发展的未来是智能制造
普通对话 对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 对话倪光南:“中国芯”突围要发挥综合优势
普通对话 黄宇红:5G给运营商带来新价值
普通对话 雷军:小米所有OLED屏幕手机均已支持息屏显示
普通对话 马云:我挑战失败心服口服,他们才是双11背后
普通对话 2018年大数据产业发展试点示范项目名单出炉 2
普通对话 陈志刚:提速又降费,中国移动的两面精彩
普通对话 专访华为终端何刚:第三代nova已成为争夺全球
普通对话 中国普天陶雄强:物联网等新经济是最大机遇
普通对话 人人车李健:今年发力金融 拓展汽车后市场
普通对话 华为万飚:三代出贵族,PC产品已走在正确道路
普通对话 共享退潮单车入冬 智享单车却走向盈利
普通对话 Achronix发布新品单元块 推动eFPGA升级
普通对话 金柚网COO邱燕:天吴系统2.0真正形成了社保管