您现在的位置: 通信界 >> 数据通信 >> 技术正文  
 
基于S3C6410的航空用RFID读卡器设计方案[图]
[ 通信界 / 佚名 / www.cntxj.net / 2012/7/5 21:32:52 ]
 

0 引 言

随着国民经济的发展,航空日益成为民众所依赖的出行方式。航空货运物流系统中食品与商品种类多,安全要求高,交接手续繁杂,急需引入信息化管理,RFID技术的出现对于改善民航的物流管理有着积极的意义。航空物流RFID系统主要由电子铅封、读卡器和数据库管理系统等组成,现有的读卡器一般采用单片机系统(如STC89C54或MC9S12X128)或者STM32系列,它们的普遍缺点是:主频偏低,不支持操作系统且用户体验不佳,满足不了航空货运物流系统日益增长的应用需求。在航空食品和免税商品物流系统中,地勤与空乘人员急需操作简洁,反应快速,可随时通过无线网络上传数据的手持读卡器,从而加快物流速度,提高机场工作人员的工作效率。基于上述情况,提出了基于S3C6410的高主频的射频识别读卡器,它支持linux操作系统,支持多线程操作,操作人员可在多个读卡界面之间切换并且能随时随地通过GPRS上传数据到SQL数据库,不但大大降低机场工作人员的工作量,而且提高了航空物流的速度与安全性。

1 硬件设计方案

系统结构如图1所示,系统采用了S3C6410微处理器,其稳定主频667MHz,最高主频可达800MHz.S3C6410集成了许多外设接口,如Camera接口、TFT-24bit真彩色LCD控制器、电源系统管理、4通道UART、32通道DMA、4通道定时器、通用I/O 端口、IIS、IIC 总线接口、USBHost、USB OTG(480Mbps)、3通道SD/MMC Host控制器及时钟生成PLL等。此外采用90nm COMS工艺,低功耗、简洁、精美且全静态设计使得S3C6410非常适合对成本、功耗敏感的应用。

系统的显示屏采用3.5寸24位的真彩触摸TFT-LCD,分辨率最大可支持到1 024×1 024,本读卡器的分辨率为480×272.存储外设为Nand flash、24C64 和SD 卡。

LINUX的Uboot、内核、开机图片和文件系统都烧写到nand flash中,24C64用于保存触摸屏校正参数和从电子标签中读取的数据。系统启动时S3C6410自动从24C64中读取校正参数,避免每次开机需校正屏幕。SD卡用于储存从电子铅封中读取的数据,此外汉字库与图标等文件也存放在SD卡中。

图1 系统结构

S3C6410通过串口1驱动GPRS模块(SIM300)与上位机SQL数据库进行无线通信。SIM300是一款3频段GSM/GPRS模块,可在全球范围内的EGSM 900 MHz、DCS 1 800MHz、PCS 1 900MHz 3种频率下工作,能够提供GPRS多信道类型多达10个,并且支持CS-1、CS-2、CS-3和CS-4 4种GPRS编码方案。

射频芯片采用NXP公司的CLRC632,它是一款针对13.56MHz的高集成无线射频IC,其管脚与MF RC500,MF RC530,MF RC531和SL RC 400均可兼容,可读写符合ISO14443协议的Type A 卡和Type B 卡,以及支持ISO15693协议的电子标签。RC632提供了2种通信接口,第一种是8位并口,可直接与各种8位微处理器相连接;第二种是SPI接口,本系统即采用了此通信接口,微处理器通过设置RC632的寄存器,便可实现射频操作(见图2)。

图2 CL RC632原理

SPI总线是一种高速全双工同步的通信总线,它使用4条线:MISO 、MOSI、SCLK 、CS.其主要特点有:同时发出和接收串行数据;可当主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。

RC632总共有32个管脚,其中管脚22、23、24是寄存器的地址线,管脚13到管脚20是8位并口。当采用SPI方式通信时,管脚13即数据位D0为MISO,管脚22即地址线A0为MOSI,管脚24即地址线A2为CLK,D1到D7则不需要连接。此外,必须把A1与NCS置底电平,NRD与NWR置高电平。

RC632与天线之间通过3个管脚DTX1、DTX2与DRX进行通信,它会把调制好的13.56MHz的能量载波通过管脚DTX1、DTX2传输到天线,而天线则通过管脚DRX把13.56MHz的能量载波传输回RC632.一般采用2种方法将天线连接到RC632:直接匹配天线和50Ω匹配天线,本系统采用直接匹配的方式将RC632与天线连接,其包括了EMC低通滤波器、天线匹配电路与接收电路。

系统采用PCB环形天线,它的EMC低通滤波器用于滤除高频电磁波,天线匹配电路与天线进行阻抗匹配,以获得最大的功率传输,增大读卡距离,同时避免阻抗失配可能对电路造成的损害。经实测,天线的可操作距离为5~10cm.

2 读卡器的软件设计

读卡器的操作系统采用较稳定的Linux-2.6.30内核,文件系统为yaffs文件系统。软件分为2大部分:第一部分为QT程序,主要的功能是接受用户指令与显示图形界面;第二部分为射频驱动程序,它负责对RC632的寄存器进行操作,实现具体的射频功能。在编写射频读卡的QT应用程序之后,需把它整合到yaffs文件系统中。此外,还需裁剪linux内核,把驱动配置到内核配置单中。

13.56MHz的RFID的典型协议有ISO-14443协议和ISO-15693协议。其中ISO-14443协议是非接触式IC卡标准协议,应用较ISO-15693更为广泛。下面将主要分析ISO-14443协议,ISO-14443由4个部分组成:第一部分,物理特性;第二部分,频谱功率和信号接口;第三部分,初始化和防碰撞算法;第四部分,通讯协议。

ISO-14443通信协议的报文可分成6个部分,如表1所示:

表1 ISO-14443通信协议的报文数据格式

报头2字节固定为AABB,报文长度代表从节点到校验的字节之和,命令代码指明了报文的功能。常用的命令代码有0201(寻卡)、0202(防冲突)、0203(选卡)、0206(密码认证)、0208(读卡)、0209(写卡)等。

QT程序在启动后,会在TFT-LCD上显示一系列的图标,分别为:寻卡、读卡、写卡、选择扇区等,在寻卡中包含了防冲突检测,它是读卡过程中非常重要的一个步骤[10-11].其流程如下,当用户点击TFT-LCD的寻卡图标时,触摸屏上会产生触摸点的位置信号,系统根据触摸点坐标判断其所在的区域,依据触摸的区域,系统做出相应的处理。QT程序把ISO-14443协议中的寻卡(0201),防冲突(0202),选卡(0203),密码认证(0206)都整合到1个子函数中。寻卡过程分为4个过程:

1)搜索标签-即S3C6410通过串口1发送指令给RC632操作其中的相关寄存器进行天线操作。无论是否有卡在天线感应区域范围之内,RC632都会S3C6410回传相关数据,S3C6410收到数据后,进行判断是否有电子标签存在。

2)防冲突-如果在天线感应区域范围之内有一张以上的电子标签,那么读卡器就需要进行选择。RC632在防冲突后,将给微处理器传回4个字节的电子标签卡号。

3)选择标签-如果要对相应卡号的电子标签进行操作,则微处理器就会发送命令给RC632,使其选中这张电子标签,以便进行下一步的读写操作。

4)密码认证-只有拥有正确密码的读卡器才能读写相应的电子标签。

选择扇区后,如进行读卡操作,则直接点击读卡图标,如进行写卡操作的话,则还需用输入数据。如图3所示。

图3 QT应用程序流程。

射频驱动程序在收到应用程序发来的报文后,除去报头与校验位,通过case语句判断命令代码,然后跳转到相应的子程序,子函数通过驱动程序对RC632的寄存器进行设置,实现射频操作。读取RC632数据时,MOSI线的第一个字节设置模式与地址:具体来说,第0位设置为1,第1位到第6位为地址,第7位设置为0,MOSI线的其他字节均按此设置。MISO线的第一个字节保留,从第二个字节开始为从RC632返回的数据。对RC632写入数据时,MOSI线的第一字节代表地址,从第二个字节开始为写入RC632的数据,此时MISO线没有启用。

驱动RC632时,首先设置信道校验寄存器,把第0,2比特置1(启用奇偶校验与CRC校验),然后把控制寄存器第3比特清零(不启用数据加密),接着把0x07写入比特结构控制器,最后一步是设置发射控制寄存器为0x03(在管脚TX2发送未经调制的13.56MHz连续载波)。设置完寄存器状态后,RC632便可与电子铅封进行通信。通信过程中的寄存器操作包含以下几个步骤:

1)置中断使能与中断请求2个寄存器为0x07,设置命令寄存器,取消当前命令;2)清除FIFO BUF读写指针(即FIFO[6:0]清零),设置中断使能寄存器,提示标志位已经设置;3)依次把数据写入到FIFO BUF,把数据从天线发送出去;4)设置命令寄存器,激活要执行的命令,读取错误标志寄存器,判断是否出错;5)等待规定的时间,然后读FIFO BUF,把天线接收的数据读取到RC632中;6)置中断时能与中断请求2个寄存器为0x07,设置控制寄存器,停止定时器,设置命令寄存器,取消当前命令。

3 现场实测和上位机SQL数据库通信实例

在现场测试过程中,分别对电子铅封的扇区4,扇区16,扇区33各进行了20次操作,其中只有对扇区16的一个写过程中出现了数据丢失情况,这显示出了稳定的操作性能。表2是读卡器对货物的电子铅封进行数据写入与读出的实例:先写入内容11220003,然后再把写入的内容读出,其操作的扇区为04号,设置密码为FFFFFFFFFF.

读出的数据传输到上位机SQL 数据库后的界面如图4所示。

表2 现场实测电子铅封读写数据

  

图4 数据传输到数据库的界面

4 结 论

提出了基于S3C6410微处理器的高主频射频识别读卡器,实现了读卡、写卡与上传数据到数据库的功能。实验表明该读卡器具有良好的稳定性与实用性,适合于民用航空领域的应用。该读卡器系统对于民航物流的发展提高具有一定的参考价值和应用前景。

 

作者:佚名 合作媒体:不详 编辑:顾北

 

 

 
 热点技术
普通技术 “5G”,真的来了!牛在哪里?
普通技术 5G,是伪命题吗?
普通技术 云视频会议关键技术浅析
普通技术 运营商语音能力开放集中管理方案分析
普通技术 5G网络商用需要“无忧”心
普通技术 面向5G应运而生的边缘计算
普通技术 简析5G时代四大关键趋势
普通技术 国家网信办就《数据安全管理办法》公开征求意见
普通技术 《车联网(智能网联汽车)直连通信使用5905-5925MHz频段管理规定(
普通技术 中兴通讯混合云解决方案,满足5G多元业务需求
普通技术 大规模MIMO将带来更多无线信道,但也使无线信道易受攻击
普通技术 蜂窝车联网的标准及关键技术及网络架构的研究
普通技术 4G与5G融合组网及互操作技术研究
普通技术 5G中CU-DU架构、设备实现及应用探讨
普通技术 无源光网络承载5G前传信号可行性的研究概述
普通技术 面向5G中传和回传网络承载解决方案
普通技术 数据中心布线系统可靠性探讨
普通技术 家庭互联网终端价值研究
普通技术 鎏信科技CEO刘舟:从连接层构建IoT云生态,聚焦CMP是关键
普通技术 SCEF引入需求分析及部署应用
  版权与免责声明: ① 凡本网注明“合作媒体:通信界”的所有作品,版权均属于通信界,未经本网授权不得转载、摘编或利用其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:通信界”。违反上述声明者,本网将追究其相关法律责任。 ② 凡本网注明“合作媒体:XXX(非通信界)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 ③ 如因作品内容、版权和其它问题需要同本网联系的,请在一月内进行。
通信视界
华为余承东:Mate30总体销量将会超过两千万部
赵随意:媒体融合需积极求变
普通对话 苗圩:建设新一代信息基础设施 加快制造业数字
普通对话 华为余承东:Mate30总体销量将会超过两千万部
普通对话 赵随意:媒体融合需积极求变
普通对话 韦乐平:5G给光纤、光模块、WDM光器件带来新机
普通对话 安筱鹏:工业互联网——通向知识分工2.0之路
普通对话 库克:苹果不是垄断者
普通对话 华为何刚:挑战越大,成就越大
普通对话 华为董事长梁华:尽管遇到外部压力,5G在商业
普通对话 网易董事局主席丁磊:中国正在引领全球消费趋
普通对话 李彦宏:无人乘用车时代即将到来 智能交通前景
普通对话 中国联通研究院院长张云勇:双轮驱动下,工业
普通对话 “段子手”杨元庆:人工智能金句频出,他能否
普通对话 高通任命克里斯蒂安诺·阿蒙为公司总裁
普通对话 保利威视谢晓昉:深耕视频技术 助力在线教育
普通对话 九州云副总裁李开:帮助客户构建自己的云平台
通信前瞻
杨元庆:中国制造高质量发展的未来是智能制造
对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 杨元庆:中国制造高质量发展的未来是智能制造
普通对话 对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 对话倪光南:“中国芯”突围要发挥综合优势
普通对话 黄宇红:5G给运营商带来新价值
普通对话 雷军:小米所有OLED屏幕手机均已支持息屏显示
普通对话 马云:我挑战失败心服口服,他们才是双11背后
普通对话 2018年大数据产业发展试点示范项目名单出炉 2
普通对话 陈志刚:提速又降费,中国移动的两面精彩
普通对话 专访华为终端何刚:第三代nova已成为争夺全球
普通对话 中国普天陶雄强:物联网等新经济是最大机遇
普通对话 人人车李健:今年发力金融 拓展汽车后市场
普通对话 华为万飚:三代出贵族,PC产品已走在正确道路
普通对话 共享退潮单车入冬 智享单车却走向盈利
普通对话 Achronix发布新品单元块 推动eFPGA升级
普通对话 金柚网COO邱燕:天吴系统2.0真正形成了社保管