您现在的位置: 通信界 >> 无线通信 >> 技术正文  
 
一种突发直扩接收机的快速载波同步方案[图]
[ 通信界 / 佚名 / www.cntxj.net / 2012/8/3 22:49:56 ]
 

0 引言

突发扩频通信技术因其具有很强的抗干扰和抗截获能力,近年来成为军事领域研究的热点。其本质是在突发通信技术的基础上,对收发信号分别进行扩频和解扩,以进一步增加信号的保密性。扩频前的一帧典型突发信号结构为一段导频序列加上一段携带信息的用户数据。

为了实现对一帧突发信号的正确解调,要在解扩出符号数据后,在规定的导频序列长度内通过有限次调整完成载波同步,否则将造成后续用户数据的丢失,导致解调失败。FLL(锁频环)+PLL(锁相环)是一种常用的,可以校正大频偏的载波同步算法,但它常用于对同步时间要求不高的连续通信系统,用于本文所涉及的突发通信系统时,经过仿真发现所需要的环路调整次数大于导频序列长度,收敛速度不够快,无法满足指标,所以对该算法进行了一些改进,通过先使用一部分的导频序列进行FFT校频,快速减小频偏,然后用FLL将频偏缩小到10 Hz以内,最后用PLL来精确锁定。

1 快速同步算法设计

在发射端设计的一帧发射信号为168 b全0导频序列+132 b用户数据共300 b,如图1所示。

经过双极性变换导频序列变为168 b全1数据,用户数据变为由1,-1组成的数据,经过卷积编码成I,Q两路信号,各自经过差分编码后用不同的1 023位I,Q两路Gold码扩频,然后以QPSK方式分别调制余弦和正弦载波,两路数据组合后发射。在接收端,使用相应的信号捕获算法,可以得到信号的Gold码初始相位和一个精度较差的多普勒频偏搜索值,这一步骤的结果是可以解扩信号,但是信号还有(-5,5)kHz的频差,而且这一过程要消耗40个bit的导频符号。也就是说在剩余的128 b导频长度内必须通过相应算法,消除5 kHz频差,完成载波精确同步。

在实际的接收机方案中使用的方法是用I路Gold码,简称Gold_I去分别解扩同相(I路)和正交(Q路)数据,用得到的两路带有频偏的符号数据去调整频偏,而Q路(Gold码,简称Gold_Q不参与频率调整,而是直接解扩Q路数据。当频偏消除后,得到I路和Q路经过差分译码、卷积译码和一系列操作之后就可以得到原始数据。

经过数学模型推导,在码片对齐后,得到用Gold_I分别解扩I路和Q路后得到的用于校正频偏的两路数据为:
  

式中:C1,C2,φ1,φ2为和采样速率、解扩数据起点位置、扩频码长度有关的常数;△f为经过扫频和信号捕获后的剩余频差,这里△f的取值范围为(-5,5)kHz;Tb=1/Rb为扩频前的符号周期,Rb为符号速率,本系统中Rb=10 Kb/s;p为信号捕获后依次解扩出来的带有频偏的符号数据的次序号。

整个快速载波同步算法流程如下:先进行FFT校频,然后FLL缩小频差,最后PLL精确锁定,分三次分步消除频偏。

1.1 FFT校频

在算法中取I(k+p)的前16个点存储在寄存器中,然后做FFT,那么这16个点相当于在一个已知频率的余弦波上等间隔采样,且采样周期fs=1/Tb=Rb=10 Kb/s,根据FFT理论,在前9个频点中,设得到的频谱能量最大点为第k点,则对应的频率^f=fs/N×(k-1)即为估计频率,其分辨率为10K/16=625 Hz,通过设定变量u5=I(k)Q(k-1)-I(k-1)Q(k)=C3sin(2π△f/10K)(C3为大于0的一个常数),来确定估计出来的频率的正负,当u5<0时,-5 kHz<△f<0;当u5>0时,0<△f<5 kHz。

1.2 FLL(锁频环)

FLL通常采用自动频率跟踪环(AFC)来实现载波频率的跟踪,AFC环的结构如文献中所示。

解扩得到的两路正交信号的点积Dot(k)和叉积Cross(k)分别为:

Dot(k)=I(k-1)I(k)+Q(k-1)Q(k) (3)

Cross(k)=I(k-1)Q(k)-I(k)Q(k-1) (4)

常用的消除符号模糊的CPAFC方法其误差函数为Ud(k)=Cross(k)×sign(Dot(k)),其鉴频特性是非线性的,且鉴频范围为(-Rb/4,Rb/4),将其改进,点积和叉积之间存在如下关系:
  

这就解决了CPAFC的鉴频非线性问题,且将鉴频范围扩大了一倍至(-Rb/2,Rb/2)。

1.3 PLL(锁相环)

Costas环是一种常用的锁相环,它对载波调制数据不敏感,在无线电接收机中得到了普遍的应用,本方案中采用的Costas环鉴相算法为:

θk=sign(I(k)×Q(k)) (7)

而数字环路滤波器采用二阶环,这是因为如果其直流增益为无穷大而频偏为常数的情况下,二阶环可以实现稳态相位误差和频率误差。其结构如图1所示。

图1中,Ud为输入的鉴频或者鉴相误差函数;C1,C2是环路调整参数,实际应用中需要反复调整至环路性能最佳;Uc为输出的频率或者相位控制字,控制NCO调整频率或者相位。

2 算法仿真结果

系统仿真条件假设为:输入中频信号,符号速率为10 Kb/s,用2路不同的1 023位Gold码扩频,扩频后码片速率为10.23 Mb/s,采样速率为8倍码片速率,经过扫频和信号捕获后剩余多普勒频率为4 600 Hz,系统输入信噪比为-16dB。

FLL频率跟踪曲线如图2所示。

由仿真结果可以看到,FLL工作的起始频率是4 375 Hz,这是由于FFT校频后,算法找到了625 Hz整数倍且离4 600 Hz最近的一根谱线,之后约43次FLL环路校正后达到了离4 600 Hz大约10 Hz处,此时FLL停止,PLL启动锁定剩余频差和相差。加上做FFT的16个符号,大约使用了59个导频符号。这与解调出来的I路和Q路中前约59个符号是错误相符合。之后解调出来的都是正确的导频符号1。而一帧信号变为260 b是由于前面的40 b被用于信号捕获和多普勒频率扫描。解调出用户数据的星座如图3所示,图中给出了锁定后去除导频符号,恢复出来用户数据的情况,可以看到载波恢复效果很好。解调出的一帧1路和Q路数据如图4所示。

3 结论

本文采用了FFT级联FLL和PLL的方法来实现突发直扩接收机中的载波快速同步。仿真结果表明该方法能在低信噪比下,实现载波同步速度较快,结构简单,能纠正的载波频偏范围大,适用于突发通信系统。

 

作者:佚名 合作媒体:不详 编辑:顾北

 

 

 
 热点技术
普通技术 “5G”,真的来了!牛在哪里?
普通技术 5G,是伪命题吗?
普通技术 云视频会议关键技术浅析
普通技术 运营商语音能力开放集中管理方案分析
普通技术 5G网络商用需要“无忧”心
普通技术 面向5G应运而生的边缘计算
普通技术 简析5G时代四大关键趋势
普通技术 国家网信办就《数据安全管理办法》公开征求意见
普通技术 《车联网(智能网联汽车)直连通信使用5905-5925MHz频段管理规定(
普通技术 中兴通讯混合云解决方案,满足5G多元业务需求
普通技术 大规模MIMO将带来更多无线信道,但也使无线信道易受攻击
普通技术 蜂窝车联网的标准及关键技术及网络架构的研究
普通技术 4G与5G融合组网及互操作技术研究
普通技术 5G中CU-DU架构、设备实现及应用探讨
普通技术 无源光网络承载5G前传信号可行性的研究概述
普通技术 面向5G中传和回传网络承载解决方案
普通技术 数据中心布线系统可靠性探讨
普通技术 家庭互联网终端价值研究
普通技术 鎏信科技CEO刘舟:从连接层构建IoT云生态,聚焦CMP是关键
普通技术 SCEF引入需求分析及部署应用
  版权与免责声明: ① 凡本网注明“合作媒体:通信界”的所有作品,版权均属于通信界,未经本网授权不得转载、摘编或利用其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:通信界”。违反上述声明者,本网将追究其相关法律责任。 ② 凡本网注明“合作媒体:XXX(非通信界)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 ③ 如因作品内容、版权和其它问题需要同本网联系的,请在一月内进行。82
通信视界
华为余承东:Mate30总体销量将会超过两千万部
赵随意:媒体融合需积极求变
普通对话 苗圩:建设新一代信息基础设施 加快制造业数字
普通对话 华为余承东:Mate30总体销量将会超过两千万部
普通对话 赵随意:媒体融合需积极求变
普通对话 韦乐平:5G给光纤、光模块、WDM光器件带来新机
普通对话 安筱鹏:工业互联网——通向知识分工2.0之路
普通对话 库克:苹果不是垄断者
普通对话 华为何刚:挑战越大,成就越大
普通对话 华为董事长梁华:尽管遇到外部压力,5G在商业
普通对话 网易董事局主席丁磊:中国正在引领全球消费趋
普通对话 李彦宏:无人乘用车时代即将到来 智能交通前景
普通对话 中国联通研究院院长张云勇:双轮驱动下,工业
普通对话 “段子手”杨元庆:人工智能金句频出,他能否
普通对话 高通任命克里斯蒂安诺·阿蒙为公司总裁
普通对话 保利威视谢晓昉:深耕视频技术 助力在线教育
普通对话 九州云副总裁李开:帮助客户构建自己的云平台
通信前瞻
杨元庆:中国制造高质量发展的未来是智能制造
对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 杨元庆:中国制造高质量发展的未来是智能制造
普通对话 对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 对话倪光南:“中国芯”突围要发挥综合优势
普通对话 黄宇红:5G给运营商带来新价值
普通对话 雷军:小米所有OLED屏幕手机均已支持息屏显示
普通对话 马云:我挑战失败心服口服,他们才是双11背后
普通对话 2018年大数据产业发展试点示范项目名单出炉 2
普通对话 陈志刚:提速又降费,中国移动的两面精彩
普通对话 专访华为终端何刚:第三代nova已成为争夺全球
普通对话 中国普天陶雄强:物联网等新经济是最大机遇
普通对话 人人车李健:今年发力金融 拓展汽车后市场
普通对话 华为万飚:三代出贵族,PC产品已走在正确道路
普通对话 共享退潮单车入冬 智享单车却走向盈利
普通对话 Achronix发布新品单元块 推动eFPGA升级
普通对话 金柚网COO邱燕:天吴系统2.0真正形成了社保管