您现在的位置: 通信界 >> 测试仪表 >> 技术正文  
 
NI 5665 与传统仪器对比演示-设置与细节
[ 通信界 / 佚名 / www.cntxj.net / 2016/4/25 22:54:53 ]
 

概览

本文讨论了巅峰对决:NI 5665 与传统台式仪器对比 这一视频中所演示的设置细节。在此演示中,比较了NI PXIe-5665与Agilent PXA的测试性能与速度。视频并不是关于两个仪器的技术指标对比,而是现场测试的对比。

硬件设置

在LTE和WCDMA测试中,使用了NI PXIe-5673矢量信号发生器。滤波器仅用于WCDMA信号,以尽量减少本底噪声。在线性度测试中,使用了两个CW信号源生成的单频信号,并通过一个小型合并器电路进行合并。所有的信号将通过分路器分别传给NI PXIe-5665 VSA 和Agilent PXA。

图 1. 硬件设置和连接

此项设置确保传输至NI PXIe-5665 和 Agilent PXA的信号是相同的。

注意:经过分路器后,信号会略有损失。

所使用的仪器

NI PXIe-5665 14 GHz高性能矢量信号分析仪

NI PXI-2596 26.5 GHz 4x1双RF多路复用器

NI PXIe-5673 6.6 GHz矢量信号发生器

NI PXIe-1075 18槽3U PXI Express机箱,安装PXIe-8133嵌入式控制器

小型合并器电路

小型分路器电路

Agilent N9030A PXA信号分析仪(N9030A-513,N9030A-B40,N9030A-MPB,N9030A-P03)

SMA至SMA线缆(3套)

WCDMA SAW 滤波器(标称频率248.6 MHz)

相位矩阵快速同步模块/NI PXIe-5652信号发生器 (2套)

图2.硬件设置,仪器及其连接方式展示

仪器控制与数据传输

NI PXIe-5665放置于安装有PXIe-8133控制器的PXIe-1075机箱内,使用PXI Express技术从仪器向上位机PC传输数据。Agilent PXA通过LXI总线(以太网)进行控制。PXA通过LXI总线传输数据所需时间为900 µs;而基于PCI Express总线技术的NI PXIe-565只需1 µs。如图3所示,PXI Express的带宽为1 GB/s,而延迟则少于1 µs。

图3. 各种仪器控制总线的带宽与延迟对比图

软件设置

主要使用的编程语言为 NI LabVIEW。控制PXIe-5665所使用的工具包和驱动程序如下:

NI LTE 测量套件

NI WCDMA/HSPA+测量套件

NI-RFSA驱动

NI LabVIEW 调制解调工具包

在Agilent PXA中载入了如下软件:

LTE测量应用程序

WCDMA测量应用程序

相位噪声测量应用程序

通过LabVIEW 和仪器控制驱动程序,基于SCPI指令对PXA进行控制。

LTE 协议标准细节: 所生成的LTE 标准信号是一个UPLINK信号,其中心频率为1 GHz,带宽为5 MHz,强度为-10 dBm。

NI PXIe-5665和Agilent PXA都会生成5个平均值。

WCDMA 协议标准细节:所使用的滤波器为SAW 滤波器,标准频率为248.6 MHz,带宽为 6 MHz。WCDMA 是一个DPCCH UPLINK信号,其中心频率为248.6 MHz。

测试结果

WCDMA ACPR测试

注意:我们并不是要对分析仪的最佳ACPR性能进行测试,而只是测量在现有设置基础上的最佳结果。使用SAW滤波器是为了让上 下相邻频道的测量结果更佳。

在WCDMA ACLR测试中,Agilent PXA和NI PXIe-5665读取相邻频道中约-81 dBc的信号。对于两种设备均按如下方式设置:

噪声校正(Agilent PXA的 IBW模式)

30kHz RBW

0 dB衰减

10个平均值

重要提示:所计算的时间为采集时间+测量时间+GPIB/LAN总线的传输时间

使用Agilent PXA时,被传回至主机的只有ACPR 读取信息,而并不是完整的轨迹。

在一个典型的测试现场中,测试工程师需要将读数传回至主机,并进行“通过/失败”类的测试,因此需要将此时间考虑在内。而且,对于视频中的所有演示试验,都进行了10次的平均运算。测试工程师通常是需要进行一些平均运算,使得测量结果更精确。

Agilent PXA的其它选项

PXA还有一个可选的模式,即无噪声校正的快速ACPR选项。使用快速ACPR选项,会损失一些动态范围。NI PXIe-5665则无此限制,所有的测量均通过噪声校正,并对速度进行优化。

图4.此图展示了PXA 的快速模式。若在设置中使用SAW滤波,则可实现的最佳ACPR值大约为-75 dBc。

图5.使用IBW 模式和噪声校正时,你可以在上通道实现-82 dBc,这一数值与使用NI PXIe-5665达到的数值接近。

图6.正如视频中所示,NI 5665可以在开启平均和噪声校正的情况下实现-81 dBc的测量,同时其速度也要比Agilent PXA快14-15倍。

TOI测试

在此测试中,我们将生成中心频率相差1MHz的两个单频信号。如果两个信号源之间没有足够的间隔,信号源所产生的互调失真会掩盖被测接收机的失真。 每个信号源输出口的AtlanTec(ACC - 20010系列)隔离器、Mini -Circuits<ZFSC-2-10G+( 10 GHz) 和 ZFSC-2-11-s (1GHZ)>功率分配器被用于信号结合,确保信号源失真低于被测失真的接收器水平。上下TOI都会被计算在内(只有上部TOI在视频中显示)。计算的上下TOI的方法如下。

IP3 Lower = P1 + (P2- IMD lower)/2

IP3 Upper = P2 + (P1 - IMD Upper)/2

以下设置对于两个仪器都适用。

0 dB衰减

01 kHz RBW

无平均值

图7. NI PXIe-5665和Agilent PXA的三阶信号成分。NI PXIe-5665的三阶信号成分的绝对强度接近-95 dBm。

如果使用更多的衰减,那么你可以获得更多的TOI测量结果。

列表模式测试

在列表模式测试中,生成了一个1GHz的信号,并使用Agilent PXA和NI PXIe-5665进行读取。随机选择2、 5、10 或14 GHz的谐波,因为两个仪器的测试结果以3.6GHz频点为界都会发生变化,而我们希望能正确地测量跳跃到更高次的谐波所需的时间。虽然这并不是一个标准的测试,但是它最好地展示了两个仪器在列表模式测试中的灵活性。

注意:对两个仪器均使用列表模式。

总时间由列表模式中的扫描时间+每个频率跳跃峰值搜索时间+数据返回至两台仪器的主机所需时间组成。

图8.在NI PXIe-5665和Agilent PXA上使用列表模式。相比大多数列表模式测试,NI 5665 要快1.5-2倍。

图9. 远程使用Agilent PXA列表模式,在上述条件下需要700ms的时间。

注意:Agilent PXA针对某些谐波上进行了优化。NI 5665 则是在所有的列表模式测试中速度快1.7-2倍。

EVM测量

在EVM测试中,使用NI PXIe-5673矢量信号发生器生成一个LTE信号。两个仪器均使用如下设置:

RBW = 30 kHz

10 dB 衰减

10 次平均

关闭自动峰值检测

图 10. 使用Agilent PXA 和 NI PXIe-5665进行LTE EVM 测试。

使用可编程的FPGA进行在线处理

图 11. 将信号处理移至FPGA上进行可以节省时间。

NI FlexRIO非常灵活,可以作为一个协处理器。在这一演示的设置中,所有来自PXIe-5665的数据都是在FPGA上进行处理;而在之前的演示设置中,数据是在嵌入式处理器中进行处理。这一特性的应用非常广泛,例如硬件处理的算法、协议实现以及实时激励-响应等应用。

测试时间比较(包含设置时间)

前面所有的测试演示都只针对单次测量的时间。而在本项测试中,除了测量时间以外,还将考虑设置时间。这在包含多种测试标准的自动化测试(例如功率放大器测试)之中很有必要。

图 12. 若考虑设置时间,NI 5665的速度要快20倍。

总结

对于一个典型的测试设置来说,相对于使用Agilent PXA,NI PXIe-5665能够提供相同或者更好的性能,而且在大多数测试中要快14-15倍。同时,NI PXIe-5665的成本要比传统台式仪器小得多。在下表中,对NI 5665以及相对应的Agilent PXA价格进行了比较。

自动化测试系统中,PXI机箱和MXI控制器的花费通常被系统中的所有仪器均摊。例如,如果一个测试系统中包含两个NI PXIe-5665矢量信号分析仪,并插在一个PXIe机箱中,则机箱和控制器的费用只会发生一次,因此总的投入要少于2 x $58,597。然而,如果一个测试系统中包含两套PXA,则投入为2 x $87,745。

注意:对于自动化测试应用来说,Agilent PXA和NI PXIe-5665在PC和所选编程语言(如LabVIEW、CVI、Visual Studio等)方面的投入是相同的,因此也没有将其纳入到比较当中。

 

作者:佚名 合作媒体:不详 编辑:顾北

 

 

 
 热点技术
普通技术 “5G”,真的来了!牛在哪里?
普通技术 5G,是伪命题吗?
普通技术 云视频会议关键技术浅析
普通技术 运营商语音能力开放集中管理方案分析
普通技术 5G网络商用需要“无忧”心
普通技术 面向5G应运而生的边缘计算
普通技术 简析5G时代四大关键趋势
普通技术 国家网信办就《数据安全管理办法》公开征求意见
普通技术 《车联网(智能网联汽车)直连通信使用5905-5925MHz频段管理规定(
普通技术 中兴通讯混合云解决方案,满足5G多元业务需求
普通技术 大规模MIMO将带来更多无线信道,但也使无线信道易受攻击
普通技术 蜂窝车联网的标准及关键技术及网络架构的研究
普通技术 4G与5G融合组网及互操作技术研究
普通技术 5G中CU-DU架构、设备实现及应用探讨
普通技术 无源光网络承载5G前传信号可行性的研究概述
普通技术 面向5G中传和回传网络承载解决方案
普通技术 数据中心布线系统可靠性探讨
普通技术 家庭互联网终端价值研究
普通技术 鎏信科技CEO刘舟:从连接层构建IoT云生态,聚焦CMP是关键
普通技术 SCEF引入需求分析及部署应用
  版权与免责声明: ① 凡本网注明“合作媒体:通信界”的所有作品,版权均属于通信界,未经本网授权不得转载、摘编或利用其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:通信界”。违反上述声明者,本网将追究其相关法律责任。 ② 凡本网注明“合作媒体:XXX(非通信界)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 ③ 如因作品内容、版权和其它问题需要同本网联系的,请在一月内进行。
通信视界
华为余承东:Mate30总体销量将会超过两千万部
赵随意:媒体融合需积极求变
普通对话 苗圩:建设新一代信息基础设施 加快制造业数字
普通对话 华为余承东:Mate30总体销量将会超过两千万部
普通对话 赵随意:媒体融合需积极求变
普通对话 韦乐平:5G给光纤、光模块、WDM光器件带来新机
普通对话 安筱鹏:工业互联网——通向知识分工2.0之路
普通对话 库克:苹果不是垄断者
普通对话 华为何刚:挑战越大,成就越大
普通对话 华为董事长梁华:尽管遇到外部压力,5G在商业
普通对话 网易董事局主席丁磊:中国正在引领全球消费趋
普通对话 李彦宏:无人乘用车时代即将到来 智能交通前景
普通对话 中国联通研究院院长张云勇:双轮驱动下,工业
普通对话 “段子手”杨元庆:人工智能金句频出,他能否
普通对话 高通任命克里斯蒂安诺·阿蒙为公司总裁
普通对话 保利威视谢晓昉:深耕视频技术 助力在线教育
普通对话 九州云副总裁李开:帮助客户构建自己的云平台
通信前瞻
杨元庆:中国制造高质量发展的未来是智能制造
对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 杨元庆:中国制造高质量发展的未来是智能制造
普通对话 对话亚信科技CTO欧阳晔博士:甘为桥梁,携"电
普通对话 对话倪光南:“中国芯”突围要发挥综合优势
普通对话 黄宇红:5G给运营商带来新价值
普通对话 雷军:小米所有OLED屏幕手机均已支持息屏显示
普通对话 马云:我挑战失败心服口服,他们才是双11背后
普通对话 2018年大数据产业发展试点示范项目名单出炉 2
普通对话 陈志刚:提速又降费,中国移动的两面精彩
普通对话 专访华为终端何刚:第三代nova已成为争夺全球
普通对话 中国普天陶雄强:物联网等新经济是最大机遇
普通对话 人人车李健:今年发力金融 拓展汽车后市场
普通对话 华为万飚:三代出贵族,PC产品已走在正确道路
普通对话 共享退潮单车入冬 智享单车却走向盈利
普通对话 Achronix发布新品单元块 推动eFPGA升级
普通对话 金柚网COO邱燕:天吴系统2.0真正形成了社保管