CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 通信电源 >> 技术正文
 
密封铅蓄电池阻抗参数与荷电态
[ 通信界 | 桂长清 | www.cntxj.net | 2004/6/3 ]
 

桂长清
中船712研究所 430064 武汉

  摘 要:蓄电池的交流阻抗特性远比理想的单电极要复杂,不同类型的蓄电池的阻抗参数差别很大,其中有些参数有可能用于指示蓄电池的荷电态。密封铅蓄电池的荷电态在50%以上时,电池内阻几乎没有变化,但其电化学反应内阻与双层电容之积,却对荷电态很敏感。

  关键词:密封铅蓄电池;荷电态;交流阻抗;内阻;电导

  蓄电池的荷电态在文献中有不同的含义。有人[1]把它定义为:电池可以放出的容量跟它可以达到的最大放电容量之比。也有人[2]把它说成是:电池的剩余容量跟它的初始容量或额定容量之比。仔细推敲,这两种含义尚有区别。前者指的是电池在使用期间逐渐退化,即使充足电也放不出原来的容量了;后者指的是电池充电不足或已经放出一部分容量,致使电池的容量低于初始容量或额定容量,一旦充足电,则可能达到或接近初始容量或额定容量。

  阀控式密封铅蓄电池广泛用于邮电通信部门,人们非常关心在线使用的蓄电池能还能放出多少电来,一旦市电停电,蓄电池组可否连续正常供电。因而在线检测蓄电池的荷电态就成为电源工作者以及一些仪器生产厂家普遍关心的问题。许多人试图用交流阻抗法测取铅蓄电池内阻,用它在线检知电池荷电态,然而得到的结果并不令人满意[3]。本文将根据电化学反应体系交流阻抗原理[4,5],阐明密封铅蓄电池交流阻抗参数的复杂性和某些规律性,供感兴趣的电池工作者、电池使用维护人员和仪器生产厂家参考。愿大家共同努力,开拓新思路,满意地在线检测阀控密封铅蓄电池荷电态。

1 单电极的交流阻抗

  一个简单的处于平衡状态的单电极,当有小电流I流过时,电极电位将会偏离平衡电位,产生过电流,η,η和I之间的关系可由(1)式来表示:

  式中i0称为交换电流密度,即电极处于平衡状态时电化学氧化和还原速度相等时的电流密度或反应速度;a为能量转换系数;n为参与电极反应的电子数;F、R和T分别表示法拉第常数、气体常数和绝对温度。当所加的交流信号很小,约为5~10mV时,则(1)式可简化为:
 

  式中的Re称为电荷转移电阻。对于电池而言,它由许多片多孔性正极和负极组成,有人称Re称为电池的电化学反应内阻或活化内阻。

  当电极上叠加有5~10mV正弦交流信号时,可以认为电极反应是可逆的,此时电极表面附近液层中参与电化学反应的粒子的浓度就会变化,出现跟时间有关的扩散层,此时测得的电极阻抗Z是由电荷转移电阻Re和反映浓差极化作用的Warbug阻抗所组成:

  式中w是角频率,w=2πf; σ称为Warbug系数,对于达到稳态时的最简单的平板式扩散过程而言,σ可表示为:


  如果电化学反应结果会有一部分物质吸附在电极表面,则这分部表面就被覆盖了,就会对总的交流电信号有影响,它跟交流电压的频率相同但位相却不同,这种影响可以用由电阻R1和电容C1并联组成的电抗来表示。当电极上没有电化学反应进行时,此时在正弦交流电压作用下的正弦电流,只用于双层电容Cd的充放电。

  根据以上分析,我们可以用图1来表示单电极体系的等效电路,其中RΩ表示电极体系的欧姆内阻,它跟交流信号的频率无关,流过电极体系的欧姆内阻,它跟交流信号的频率无关,流过它上面的电流和电压信号是同相位的。正是因为电极体系的交流阻抗含有电阻、电容和电感三种成分,则总交流阻抗Z应酬 用实部R和虚部X来表示
Z=R-jX(6)

  当交流信号频率足够低时,可以认为电极反应是可逆的,此时电极反应速度受扩散过程控制,电极反应的交流阻抗理论导出X和R之间存在(7)式所法的关系
<![endif]>

  因而将不同频率下测得的X和R作图(复数平面图),地得到斜率为45°的直线(图2a)。

  当交流信号频率足够高时,可以认为电极反应是完全可逆的,此时电极反应速度受电荷传输电阻Re控制,并且有:
  (R-RΩ-Re/2)2+X2=(Re/2)2 (8)

  即X-R复数平面图为半园(图2b),其半径为Re/2,园为心(RΩ+Re/2),园的最高点的角频率wm为:
wm=1/(CdRe)

  对部分可逆的电极反应而言,其X-R复数平面图如图2c所示。

  2 蓄电池交流阻抗特性
2.1 电池与可逆电极阻抗参数的差异
  从上节介绍的单电极交流阻抗研究方法的基本原理可以看出,各交流阻抗参数之间的关系是建立在下列假设之上的,跟实际的电池却有差异。

  a.研究的对象是单电极,是平板式电极。可是在电池中,所用的电极是多孔性电极,其孔径大小和分布是非常复杂的。再者,电池的极群是由许多片相互交叉排列并联的极板组成的,正负极之间存在着相互影响。
b.所研究的电极是处于可逆状态的。可是对于电池而言,其正极和负极上会同时进行着多个电化学反应,它们所处的状态只能近似可逆状态。

c.待测担忧极表面附近液层中反应物和生成物的浓度是保持不变的。可是就蓄电池而言,在每次充放电的初期和终期是会有变化的,而且有时正负极反应粒子之间会有影响。

d.在研究电极和辅助电极之间所加的交流电压信号很小,并且辅助电极的电位是不变的。然而测取电池的阻抗参数时,是在电池正负极之间叠加交流信号,只有当一个电极的可逆性远大于另一个电极时,才符合上述假设条件。

  由此可以看出,对于一个实际电池体系而言,其内部结构和电华沙牢骚应条件远比单电极要复杂得多。但由于蓄电池在开路时其正极和负极是接近平衡状态的,在充放电过程中所进行的电化学反应是接近可逆的,因而我们可以近似地将单电极阻抗测试原理用于蓄电池,测取阻抗参数。近20余年来,人们就试图观察蓄电池在不同荷电态下的阻抗参数变化规律,以实现在线检测蓄电池荷电态。

2.2 电池的阻抗
  这是人们研究最多的一个参数。根据单电池阻抗原理,蓄电池阻抗是由三部分组成的。

  a.欧姆内阻RΩ。它包括极柱、极栅、活性物质、电解液、隔膜材料、连接条等的电阻。流过RΩ上的电流和电压信号是同相位的,娄值上是成比例的,且跟测量信号的采集时间无关。

  b.电化学反应电阻Re。它是由于在电极上进行电化学反应而使电极是位偏离平衡电位而产生的。当信号电压小于10mV时,由(2)式和(3)式可知,电流和电压信号是成正比例关系变化的,其值也跟测量信号采集时间无关。

  c.浓差极化内阻Rc.当有外电流流过电池时(充电或放电),极板表面附近液层中的生成物和反应物粒子的浓度由于扩散作用而逐渐产生变化,从而导致电极电位或电池电压产生变化。此时表现出来的电阻就是浓差极化内阻。

  阀控密封铅蓄电池的内阻会因测试信号的波形(方波或正弦波)、频率、幅度的不同而包含了不同的成分,那么测得的数值也就理所当然各异了。例如,用频率在200kHz以上的方波或用阶跃电流法测取0.5ms之内的电压降方法测得的电池内阻,可以认为是欧姆内阻[6];如果测试信号幅度较大(10mV以上)或电池的可逆性不太好(例如某些一次电池),则上述内阻值中就应当考虑电化学反应内阻了。

2.3 电池的容抗
  蓄电池对交流信号的响应,表明它是一个非常大的容性器件。蓄电池的容抗主要来源于以下几个方面。

a.双电层电容Cd

  当电极(固相)与电解液(液相)相互接触时,则由两相中各存在剩余电荷所引起的静电相互作用,以及电极表面与溶液中的各种粒子(溶剂分子、溶剂化了的离子和溶质分子等)之间的相互使用,使得固液两相界面类似于电容器一样,两侧带有相反的电荷,即双电层。实测结果表明,光滑的电极表面双电层电容约为18μF/cm2。一个蓄电池全部电极的表现面积均有数百至数千cm2。由于电极是多孔性的,其真实面积又达到表观面积的数百倍,因而一个电池的双电层电容是很大的。一些电池的双电层电容值可以利用(9)式进行实验测定。

b.法拉第容抗

  蓄电池进行充放电时就会有电流流过电极,但电池电压却在缓慢的变化,共行为类似于电容器的充电或放电。由于这种电容特性是由电化学反应引起的,因而称为法拉第容抗。

c.吸附和成相电容

  当电解液中存在可被电极表面吸附的粒子时或电极反应产物是固相时,它们会将电极表面一部分蔽盖起来。那么在对电池进行正弦交流信号测量时,它们也会表现出容性特征。

  在对蓄电池进行交流阻抗测量时,如果信号频率很低,则容抗就比较大,那么Warbug阻抗中的容抗部分会起主要使用,相角ø也应当较大;当使用高频信号进行测量时,则容抗就可以忽略了。

2.4 电池的感抗
  当交流信号的频率较高时,测得的电池阻抗中会有感抗在起使用,这主要是由于电池中的多孔性电极引起的[1]。

  电池中的多孔性电极,其孔的长度比孔径大得多,并且是在孔的深处进行着电化学反应。正因为如此,跟平板电极比起来,多也电极的阻抗就具有如下特征:

a.双电层充电电流正比于t-1/2,而不是t-1。

b.扩散传质过程的阻抗依整于跟w-1/4成比例的项,而不是w-1/2的项。

c.阻抗图在高频区的半园不跟实轴相交,而是在π/4处断开。

3 密封铅蓄电池荷 电态与阻抗参数

  由以上分析可知,铅蓄电池的交流阻抗参数是跟电池的内部结构和变化紧密相关的。荷电态为100%的电池,正极为多孔性二氧化铅,负极为多孔性铅;一旦发生放电反应,则多孔性电极内部将会变化,生盛誉导电的硫酸铅,并且电解液中的硫酸浓度也会降低。此外,由于生成硫酸铅,使多孔性电极内部结构和极板体积都有变化,传质过程也随之改变。因此,铅蓄电池的某些阻抗参数应当随电池荷电态的改变而不同。

  铅蓄电池内阻虽然是人们研究最多的一个参数,其目的是寻求它与电池荷电态的关系,但结果却不能令人满意[3]。造成这一结果的原因看来可以从以下两方面来认识。

  首先是不同仪器生产研究生产的不同型号规格的电池内阻测量仪,所使用的信号频率不同,测定的参数也不一样(见表1),测定的是含有不同成分的内阻,结果使用不同型号的电阻仪测取同一个电池的内阻,却得到了不同的结果,导致人们对阀控密封铅蓄电池内阻的认识产生了一些误解。由此看来,对测定某种型号蓄电池内阻有效的电池内阻测定仪,却不一定适合于密封铅蓄电池,反之亦然。
  
  其次,由于阀控密封铅蓄电池的内阻,在电流荷电态高于50%时,几乎没有变化,只在小于50%时才迅速升高[8]。这样虽然可以用电池内阻(或电导)的变化来定性判别电池好与坏[9](其误判的可能性达到50%),但却无法用内阻来指示密封铅蓄电池的荷电态[3][7]。

  除了电池的内阻(或电导)外,文献[7]介绍了用(9)式所示的电池电化学反应电阻Re跟双电层电容Cd的乘积ReCd来指示铅蓄电池的荷电态,前者在数值上等于铅蓄电池阻抗复数平面图上半园曲线最高点的角频率(见图2b)。当铅蓄电池的荷电态在50%~100%时,ReCd是非常明显地随荷电态而改变(见图3)。它的变化趋势正好跟铅蓄电池内阻的变化趋势相反。
 
  铅蓄电池之所以具有这一特性,看来这是由于电极的比表面积跟电池的荷电态密切相关。前面已经表明,蓄电池的双层电容值很大,并且正比于电极的真实表面积。当电池的荷电态处于100%时,电池的孔率最高,真实表面积最大,故ReCd也最大;荷电态下降时,放电产物硫酸铅会堵塞电极小孔,降低电极比表面积,导致双层电容的下降,结果是ReCd必然明显下降。

  有可能用来指示电池荷电态的交流阻抗参数很多,如交流阻抗的模数、实部、虚部、相角、串联电阻或电容、并联电阻或电容等;其中有的已经在其他类型的电池中观察到规律性的变化。例如文献[10]报道了可以用等效串联电容Cs来指示碱性锌锰电池的荷电态;文献[11]观察到在足够低的频率下测得镉镍电池的交流相角ø和等效串(并)联电容随荷电态而近于线性的变化,因而可以用它们来指示镉镍电池的荷电态。

4 结论
  a.交流阻抗法是研究电化学反应的有效方法,但蓄电池的交流阻抗特性远比理想的单电极要复杂。

b.有可能用来指示蓄电池荷电态的阻抗参数很多,应根据蓄电池的不同类型适当择取。

c.荷电态在50%以上的阀控密封铅蓄电池是不宜用内阻来指示其荷电态的;但其ReCd却对荷电态很敏感。

参考文献

1 Shalini Rodrigues etc.A review of state-of-charge indication of batteries by means of AC impedance measurements.J.Power Sources.2000,87:12~20

2 J.D.Kozlowski etc.Mode-based predictive diagnostics for pri-mary and secondary batteries.The Battery Man,2001,14~29

3 桂长清.阀控密封铅酸蓄电池电导测试原理与实践.电源技术.1999,23:266~270

4 田昭武.电化学研究方法.科学出版社,1984.250~341

5 周伟舫.电化学测量.上海科学出版社1985,124~150

6 Isamu Kurisawa,Masashi Iwata.Internal resistance and edteriora-tion of VRLA for stand-by applications.GS News Technical Re-port.1991,(2):19~22

7 F.Huet.A review of impedance measurements for determination of the state-of-change or state-of-health of secondary batteries.J.Power Sources.1998,70:59~69

8 桂长清,柳瑞华.VRLA的电导与容量的关系.电池.2000,(2):74~76

9 David O.Feder,Mark J.Hlavac,Wim Koster.Evaluating the state-of-health of flooded and VRLA batteries.J.Power Sources.1993,46:391~415

10 S.Rodrigues etc.AC impedance and state-of-change analysis of alkaline Zn-MnO2 primary cells.J.Appl.Electrochemistry 2000,30:371~377

11 S.Rodrigues etc.Impedance parameters and the state-of-charge(I)Ni/Cd battery.J.Appl.Electrochemistry.1979,9:125~139

 

1作者:桂长清 来源:通信电源技术 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像