CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 通信电源 >> 技术正文
 
电源管理系统的散热问题及解决办法
[ 通信界 | 中国电力通信网 | www.cntxj.net | 2006/1/17 21:25:36 ]
 

美国国家半导体策略市场总监 Paul Greenland 
  

    设计一款功率转换器并不简单,因为其中涉及多方面的技术知识。出色的功率转换器设计工程师必须对模拟及混合信号电路的设计、变压器绕组、电磁兼容性、封装及散热设计有一定的认识。由于电子产品的功率密度越来越大,加上不同的电源供应系统设计各有优缺点,因此工程师必须审慎考量,作出最适当的取舍,才可确保所采用的封装及散热设计能够满足电源管理系统的要求。部分电子产品需要传送大量数据,令系统结构越趋复杂,因此散热系统的设计越来越受到高度的关注。

 

    称为“砖块”的模块式直流/直流转换器在上一世纪的八十年代中期正式面世,自此以后,这方面的技术发展非常迅速。以十六分之一 砖块的结构设计为例来说, 1.2 平方英吋的印刷电路板板面空间可转换功率高达 33W 50W

 

    电信系统总线可以在 36V 72V 的电压范围内操作,这个电压范围比容差较小的数据通信系统总线更为广阔。总线转换器负责在总线上进行功率转换,其中的每一张子卡都互相分隔开。转换器采用这种砖块格局尚属首次,但砖块结构有它的优点,因为子卡上的供电可直接输入负载电路。近年来数字信号处理器及数字特殊应用集成电路大受欢迎,因此中间总线结构便应运而生。这种结构的优点是总线转换器可以提供隔离的 12V 14V 供电,而卡上负载的点负载稳压器则负责进一步的功率转换。

 

    设计电源供应器的工程师一旦为应用系统选定电路布局之后,便要面对以下的问题:究竟需要多少功率转换级 1 ?转换器究竟应采用硬开关还是软开关?由于这两个问题的关系,选用哪一类开关及整流器便显得极为重要。大部分砖块式转换器都采用功率 MOSFET 组建电源开关及低电压同步整流器。经过多年的发展,MOSFET 技术已相当成熟,现在系统设计工程师甚至可以选用具有标准导通状态电阻 (RDS-ON) 的沟道型芯片及极间电容较低的平面型芯片。电压及电流的额定值一旦确定之后,选用哪一类芯片便要视乎芯片的最大损耗究竟来自开关速度还是来自导通状态电阻?近来,CDG / CGS 比率受到系统设计工程师高度的重视,因为这个比率是显示高功率、高频率的半桥式功率转换级会否出现射穿情况的指标。

 

开关频率及电磁干扰之间的适当平衡

 

     好的功率转换器除了要有较高的开关频率之外,也要顾及系统的转换效率及电磁干扰。换言之,各方面都要兼顾,力求取得适当的平衡。开关频率越高,电源开关、整流器及控制电路的开关损耗便会越高。以模块式直流/直流转换器来说,只要提高开关频率便可采用较小的滤波器及能源储存元件,这是提高开关频率的好处。但以采用硬开关的系统来说,电源管理芯片的高频信号会出现较多谐波,令芯片与散热器或供电层之间的杂散电容出现大量位移电流。这些位移电流甚至会流入变压器的线圈电容,最后甚至会造成共模干扰。

 

     以采用直流/直流转换器的控制及驱动系统来说,工程师设计集成电路及其封装时,已考虑到砖块转换器的结构而作出适当的调节。以电路的设计来说,更高的技术集成度、板上高电压稳压器、更高时钟频率以及可编程压摆率的低射穿驱动器都适合新一代的设计采用 2。散热是设计电源管理集成电路需要面对的主要问题。电源管理集成电路内置的驱动器、稳压器通道晶体管以及电源开关都设于裸片的外围,紧贴焊盘。这些内置芯片及晶体管进行操作时,热能会传遍整颗裸片,形成一幅由不同等温线组成的热能“分布图”。若不同的晶体管分别设于不同的等温线之上,部分次电路 (尤其是温度必须相匹配的差分电路) 便会在性能上受到影响。集成电路的线路布局必须作出调整,例如芯片正常操作时,不同晶体管在同一时间内都处于相同的温度之下,但要取得这样的效果并不容易。电源管理集成电路的缩微图显示部分芯片经常采用交叉耦合的设计,以便可以在初期阶段减少热能的耗散量。

 

1LLP 封装的正面及反面

 

  图 1 显示的无引线导线封装 (LLPÒ) 是一种有导线的芯片级封装 (CSP),其优点是可以提高芯片的速度,降低热阻以及占用较少印刷电路板的板面空间。由于这种封装具有体积小巧及外型纤薄的优点,因此最适用于设有模块式直流/直流转换器、元件较为密集的多层式印刷电路板。

 

2LLP 封装的有限接线原理图 (finite element plot)

 

LLP 封装有如下的优点:

 

·        低热阻

·        较少寄生电子响应

·        可以充分利用电路板板面空间,以支持更多其他功能

·        封装更纤薄

·        封装更轻巧

 

  集成电路的封装设计过程涉及很多繁复的工序,例如要为散热及机械系统建立模型,以便进行测试;此外,进入生产及测量阶段之后,裸片上的实际测量数字或模拟图所示的热能分布数字必须与图2 所示的有限接线电路模型 (finite element model) 互相比较。一般来说,我们只要针对设于新封装内的测试裸片,测量其二极管的正向压降,便可取得裸片的实际测量数字。很多不同的远程二极管温度传感器芯片都采用这种经过长期测试、证实有效的技术,以便能够为新一代的微处理器、数字信号处理器及数字特殊应用集成电路提供更可靠的防护。我们也可利用测试裸片内置的一个或多个二极管将热能传入,以核实裸片的热特性。

 

封装设计及热特性

 

  芯片封装有两种热特性,分别以 qJA qJC 作为代号表示。按照定义,qJA 是封装热阻的总量,亦即封装内部及外部的热阻总和,其数值可以利用以下公式计算出来:

 

       qJA = qJC + qCA = (TJ - TA)/P

 

在以上公式之中:

 

qJC(TJ - TC)/P -- 结面至机箱的导热性热阻 (°C/W)

 

qCA(TC - TA)/P -- 机箱至环境的对流热阻 (°C/W)

 

PI (电流) x V (电压)  -- 芯片的热量耗散 (W)

 

TJ:芯片结面的平均温度 (°C)

 

TA:环境的平均温度 (°C)

 

TC:封装上某一指定位置的机箱温度 (°C)

 

  在封装物料的底层内,qJC 热阻大部分属于导热性热阻,热阻大小主要取决于封装的配置。若热能流向与封装的物料层平面成 90 度角,qJC 可以利用以下公式计算出来:

 

       åti/(ki Ai)

 

  在以上公式之中,ti 是指每一封装物料层的厚度,ki 是指其导热性,而 Ai 是指导热面的面积。上述封装物料包括连接裸片的物料、导线、裸片表层涂料以及模封或封装绝缘物料。

 

  qCA 是外在环境的对流热阻,其大小主要由周围环境、封装边缘状况及共轭热能传送等因素决定。以 LLP 封装来说,结面至周围环境的热阻较低,只要降低印刷电路板导热面至结面的热阻,便可减少大部分结面至周围环境的热阻。图3 的横切面显示裸片焊接在连接裸片的焊盘上,而焊盘则直接焊接在印刷电路板的供电层之上。以采用砖块转换器的系统来说,其 qCA 热阻值主要取决于印刷电路板供电层的面积,因为热能主要通过导热的方式散发出去,而传导成为主要散热方式的原因是子卡之间的间距越趋缩小,令空气的对流作用受到限制,无法充分散发热能。

 

3LLP 封装的横切面

 

不同封装的比较

 

  芯片底层的供电层只要加设散热孔,便可改善 qCA 对流热阻。但我们若将焊接 LLP 封装的焊接层面积加大,散热效果会比改善对流热阻更为显著。只要将 LLP 封装与采用相同引脚数目及裸片的传统式 SO 封装加以比较,便可显示 LLP 封装这方面的优势。

 

MSOP-8 封装为例来说,这种封装占用 15 平方毫米的印刷电路板板面空间,而 LLP-8 封装所占用的板面空间只有 9 平方毫米。两者在热阻方面有很大的差别,LLP-8 封装的热阻 (qJC) 只有 40°C/W,而 MSOP-8 的热阻却高达 200°C/W

 

  以下就上文所说作一简单的总结。对于电源管理集成电路来说,模块式直流/直流转换器对周围环境有极严格的要求。照目前的趋势看,电源系统的功率密度会越来越高,这是不可抗拒的发展规律,而工程师也会更充分利用电路板的板面空间。面对这个发展趋势,设计电源管理集成电路及芯片封装的工程师便不得不进一步改善热阻及板面空间的使用效益,并且在这个精益求精的过程中不断为业界创立新的标准。我们倡议业界采纳新标准时,必须向电源供应系统设计工程师详加解释,让他们对封装设计、测量及验证过程有一定的了解。由于新一代的分立式电源管理芯片非常受欢迎,因此工程师尤其是要对电源管理技术有一定的认识。

 

1作者:中国电力通信网 来源:中国电力通信网 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像