CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 专网通信 >> 技术正文
 
AD9857电力线通信发射机中的应用
[ 通信界 | 刘成茂 西安电子科技大学 | www.cntxj.net | 2010/7/19 20:02:11 ]
 

  摘要:AD9857是一种可广泛用于电力线通信中的数字上变频芯片,文中介绍了AD9857的工作原理和使用方法,并针对电力线通信发射机的设计,详细讨论了AD9857的配置和相关电路的设计方法。

  关键字:AD9857;电力线通信;数字上变频

0 引言

  电力线通信PLC (Power Line Communication)技术作为一种新型的通信方式,被广泛用于远程监控指示、设备保护、电力线自动抄表、电网负载控制和供电管理等领域。随着通信科技的不断发展,软件无线电技术为电力线通信系统的设计提供了新的方法。基于软件无线电的电力线通信发射机硬件平台包括FPGA模块、AD9857上变频模块、滤波放大模块及其它模块。其中,FPGA模块用于进行基带处理和系统控制。AD9857模块用于实现基带信号的数字上变频,并将基带信号变频为中频信号,然后通过滤波放大模块,送入电力线耦合模块。因此AD98-57是连接数字信号和模拟信号的桥梁,其性能的好坏将影响电力线通信的质量。

1 AD9857的工作原理

  AD9857是由Analog Devices公司研发的14位积分数字上变频器件,具有200 MHz内部时钟速度。它集成了带锁定指示器的4~20倍可编程时钟倍频器,可提供高精度的系统时钟;可选择单端或者差分输入参考时钟,输入时钟范围为10~50MHz;具有14位DUC、DAC数据通道,且集成了两个插值滤波器及CIC预先补偿滤波器,可接受复合I/Q数据输入;具有32位频率控制字,最高可产生90 MHz的载波输出,同时由DDS提供正交载波,可实现PAM、QAM、ASK、FSK等多种信号的上变频调制;具有10MHz串行通信控制接口,可与SPI兼容;具有8位的输出幅度控制及较好的动态输出特性,例如当输出65 MHz模拟信号时,其无杂散动态范围SFDR大于80 dB。

  AD9857主要由14位并行数据输入接口、CIC反转滤波器、固定插值因子滤波器、CIC可编程插值滤波器、正交调制器、直接数字频率生成器DDS、反转SINC滤波器、14位DAC以及串行通信端口、内部寄存器、时钟电路等部分组成。其系统结构与功能如图1所示。

 

  AD9857有三种工作模式:正交调制模式、单频模式以及内插数模转换模式。此处选取正交调制模式。AD9857的核心部分是内插滤波器与正交数字混频器。内插滤波器通过在原始取样值附近增加新的取样值——零值来增加输出信号的采样率,但在时域中向数据插入零值时,信号将会在频域上产生原始信号频谱的镜像。因此,还需通过低通滤波器将镜像频谱滤除。正交数字混频器将内插后的I/Q信号与正交载波信号进行数字混频,来完成上变频过程。正交载波信号由直接数字频率合成器DDS产生,其载波频率可通过一个32位的寄存器控制,具有较高的频率精度。

2 AD9857的初始化

  AD9857的初始化主要是通过对一个串行接口配置AD9857及其内部参数的方式进行。AD9857提供了一个灵活的同步串行通信口,该串口兼容Motorola的6095/11 SPI协议及Intel8051SSR等协议,允许对配置AD9857的所有寄存器进行读写操作。同时,在支持单字节和多字节传输方式的情况下还可支持先传MSB,或先传LSB的传输方式,此处选用MSB方式,其串口管脚包括CS、SDIO、SD0、SCLK和SYNCIO。

  AD9857的一个串口通讯周期分为以下两个阶段:

  第一阶段是指令周期,即对AD9857的指令字节的写入。指令字节给AD9857的串口控制提供有关数据传输周期的信息,并可确定即将到来的数据传输是读还是写、数据传输的字节数以及传输的第一个字节的寄存器地址。

  第二阶段是数据传输周期。每个通讯周期的前8个SCLK上升沿用来写AD9857的指令字节,其余的SCLK上升沿是为了通讯周期的第二个阶段,即AD9857和系统控制器间的数据传输。AD9857的所有数据传输在SCLK上升沿被寄存,在下降沿被送出。图2所示是寄存器数据写时序图。

  SYNCIO信号可用于串口同步。当传输一个周期后,为防止符号同步丢失,应使SYNCIO信号拉升为一高电平,并持续一个时钟周期,而后重新拉低,即开始下一个通信周期。

  在本系统中将AD9857配置为正交工作模式,需要设置的寄存器组共有8个,地址为00h~07h,另外的18个寄存器与该工作模式无关,因而无需设置。串口中一个通信周期最多只能传输4个字节数据,因此,应分两个通信周期完成寄存器组的写入。在两个通信周期中,第一个指令字节和其中四个字节寄存器数据组成第一个通信周期;第二个指令字节和另四个字节寄存器数据组成第二个通信周期。

  内部控制寄存器地址分布范围为00h~19h,其中00h和01h是共用的,可对AD9857的工作模式、高低位顺序、锁相环倍频数、串口工作模式、自动节能、CIC溢出控制处理、PLL锁相环失效处理等运行方式进行设置。从02h~19h共分为4组相同结构的寄存器,每一组长度为6 byt-e,其中有存储DDS的频率控制字、CIC可编程插值滤波器的插值倍数N及输出增益控制。各组的值可以预先设定,在AD9857工作时可以通过直接配置管脚PS0、PSl来选定所需要的功能组,从而达到快速更改工作参数的目的。

  此过程需用到的计算公式有:

 

  本系统参考时钟输入为10 MHz的单端时钟,设置PLL时钟倍数为PLL_MUL=4,则系统时钟为SYSCLK=40 MHz。系统需要并口数据输入速率为PDCLK=1.25 MHz,则根据公式:

 

  其中CIC滤波器的插值倍数为N_CIC=8,AD9857的载波频率为4 MHz,则混频器DDS的输出频率即为fout_DDS=4 MHz,其频率控制字寄存器FTW设置为0x19999999。

3 AD9857的数据传输过程

  在完成初始化后,AD9857即进入正交调制模式。数据通过14位并行口送入。AD9857的数据传输接口如图3所示。

 

  各引脚功能为:

  DO—D13:数据传输端口,14位并行端口;

  PDCLK:输入数据同步时钟,2.5 MHz,由AD9857提供给FPGA;

  TxENABLE:传输使能信号,当信号为0时,屏蔽输入数据,自动在I/Q通道填0;当信号为1时,接收数据,当第一个上升沿来到时,开始接收数据。

  数据通过14位并行数据接口传输给AD9857,I/Q通道数据交替传输,每两次数据传输匹配为一组合法的I、Q采样数据。两路数据再通过反转CIC插值滤波器,预先补偿CIC滤波器带来的衰减。之后,数据流过插值因子为4的固定内插滤波器和可编程CIC滤波器。其中CIC滤波器的插值率可通过寄存器设定,通常设置为4倍插值,便可经过两级内插滤波器提高信号采样率,同时低通滤波器滤除了因内插而产生的镜像频率。最后信号进入正交调制器,与正交载波信号进行数字混频(DDS),完成上变频处理。经上变频处理的信号再经过D/A转换,生成模拟中频信号输出。输出的模拟信号通过差分信号IOUT输出,其输出电流范围为0~20 mA。

4 基于AD9857的数字上变频电路设计

  基于AD9857芯片的信号上变频处理模块的主要任务是完成调制信号的上变频、DAC转换、滤波放大和处理,最后将信号经过电力线耦合模块发射出去。

  该设计中,AD9857外部晶振使用10 MHz,内部经过4倍倍频,工作时钟为40 MHz。内部可编程CIC内插系统为8,直接数字频率合成器DDS产生4 MHz载波信号。AD9857从FPGA接收IQ两路信号,经过32被内插后,与4MHz载波进行正交调制,之后,在经过D\A转换将其变为电流信号,最后使用变压器ADTl-l把电流信号转化为电压信号。由于AD9857输出信号存在镜频干扰。可使用模拟带通滤波器进行信号处理,带通滤波器通带频率为3 MHz-5 MHz,通带衰减很小。最后信号经过AD8139进行差分放大,送入电力线耦合模块。

5 结束语

  文中介绍了AD9857数字上变频芯片在电力线通信发射机中的应用,描述了AD9857的工作原理和电路设计。通常在实际应用中AD9857需要在FPGA的配合下使用,其参数配置往往也要根据电力线通信的具体应用进行设计和配置。

 

 

 

 

1773作者:刘成茂 西安电子科技大学 来源:山西电子技术 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读

特朗普与苹果CEO库克通话 据报iPhone今年晚些时候或涨价

Spectrum仪器推出通过以太网控制生成宽带信号的任意波形发生器

数码视讯参与制定广电总局两项重磅行业标准

亚信科技牵头制定IEEE联邦学习框架国际标准正式发布

硅谷观察:马斯克赢了一局,但OpenAI也没输

美国议员质疑马斯克在SpaceX和政府机构的双重身份

英伟达CEO黄仁勋:不会使用人工智能的人将失业

数智国云|由云向智 看数字中国建设的“电信范式”

数智国云|让“想象力”变成“生产力”中国电信云上AI应用解锁“五位一体”新图景

2025智能云生态大会|信创合作论坛圆满举办“翼可信”携手伙伴共筑高质量行业生态
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像