CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 通信电源 >> 技术正文
 
放大器输入和输出电压范围轨到轨的误区
[ 通信界 | 郑荟民 | www.cntxj.net | 2022/10/27 17:05:43 ]
 

由于工艺限制放大器的输入电压范围、输出电压范围和供电电压之间存在电压差。在设计中,应确保电路在信号处理中不会因为放大器的输入、输出限制导致失真。本篇将介绍放大器输入电压范围和输出电压范围参数的使用方法与轨到轨的理解误区。

1 输入电压范围

输入电压范围(Input Voltage Range),是指放大器两个输入端引入信号的电压范围,也称作共模输入范围(Input Common-Mode Voltage Range)。在数据手册中给出的方式有两种,其一,直接提供输入电压范围。如图2.2,ADA4077在±15V供电时,输入电压范围在-13.8V至+13V。

图2.2 ADA4077输入特性参数

其二,以供电电源轨为参考的输入电压范围,如图2.168,ADA4807的共模输入范围是-Vs-0.2V 至Vs+0.2V。其中,-Vs表示放大器负电源供电电压,+Vs表示放大器正电源供电电压。当电源电压是±2.5V时,输入电压范围为是±2.7V。

图2.168 ADA4807输入特性参数

当输入信号超出放大器的输入电压范围,将发生削波现象。如图2.169,ADA4077组建缓冲器电路,使用±15V供电,信号源Vin提供幅值为±15V,频率为5KHz的正弦波。

图2.169 ADA4077输入电压限制仿真电路

电路瞬态分析的如图2.170,输入信号V(in)是正弦波幅值为±15V频率为5KHz,但是输出信号V(out)的发生失真,在波峰处被削平,最高输出电压为13.55V,最低输出电压为-13.39V。

图2.170 ADA4077输入电压限制瞬态分析结果

2 高输出电压与低输出电压

高饱和输出电压摆幅(High Saturated Output Voltage Swing,VOH)简称高输出电压,与低饱和输出电压摆幅(Low Saturated Output Voltage Swing,VOL)简称低输出电压,是指放大器在给定电源电压和负载时,输出信号的电平能达到最高与最低电压。

数据手册中给出的方式有两种,其一,直接提供高、低输出电压值。如图2.3,ADA4077在±15V供电,驱动1mA负载时,低输出电压为-13.8V,高输出电压为+13.8V。

图2.3 ADA4077输出特性

其二,以电源轨供电电压为参考的输出电压摆幅。如图2.171,ADA4807在输出负载为1KΩ时,低输出电压典型值为-Vs+0.07V ,高输出电压典型值为+Vs-0.04V。其中,-Vs表示放大器负电源供电电压,+Vs表示放大器正电源供电电压。如果电源电压是±2.5V时,低输出电压为-2.43V,高输出电压为2.46V。

图2.171 ADA4807 输出电压摆幅

高、低输出电压的限制与工作温度相关。如图2.172,ADA4077的高、低输出电压随温度升高而变大。因此,在迟滞比较器、波形整形等应用时需要结合温度、功耗信息设计门限阈值。

图2.172 ADA4077高、低输出电压与温度

3 轨到轨的正确理解

如图2.173,部分放大器数据手册的首页标有轨到轨(Rail-to-Rail,RR)的描述。它是指放大器的输入电压范围、输出电压的摆幅接近(不是等于!!!)电源电压。具体类型包括轨到轨输出(RRO)、轨到轨输入与输出(RR I/O)。

图2.173 ADA4625与ADA4807特性概述

轨到轨放大器应用中需要注意以下几点:

(1)信号到正电源轨与信号到负电源轨的绝对值可能不一致。      

(2)信号到电源轨与负载大小有关,负载电阻越大(负载电流越小),到轨压差越小。

(3)信号与电源轨之间存在电压差,通常为数十毫伏。

其中,特别注意第3点,轨到轨不代表信号与电源轨完全一致。尤其在单电源供电系统可能导致小信号失真。

2018年9月上旬,笔者收到一位工程师的咨询,他为国产知名3C企业即将发布的新产品,设计了一款生产线测试设备,其中使用TI轨到轨输出的零漂放大器OPA2335处理0~2V直流信号,OPA2335供电电源为单5V,测试中发现最低输出只有20mV,不能达到0V输出。

笔者与工程师确认OPA2335数据手册,如图2.174。单5V供电,输出阻抗为10K时,低电压输出限制为15mV(典型值),即小于15mV信号输出时将发生失真。建议更换为正、负电源供电的放大器,保证在0V附近信号不失真,提供ADA4528/ADA4522部分样品进行验证。最终工程师使用支持双电源供电的零漂型放大器完成设备整改。

图2.174 OPA2335输出特特性

综上,输入、输出电压范围参数与放大器供电范围挂钩,而放大器的供电电压是放大器选型评估中优先级最高的参数。在选型分析中,待定放大器型号的交流参数,直流参数即使非常适合拟定的需求,但是如果供电电压不达标就会否决。

 

1作者:郑荟民 来源:通信界 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像