CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 视频通信 >> 技术正文
 
多光子显微镜成像技术之二十二 多色三光子荧光成像技术
[ 通信界 | 光波常 | www.cntxj.net | 2022/10/30 19:05:20 ]
 

作为深层组织和活细胞成像的强大工具,多光子显微镜可以简单分为双光子显微镜(2PM)和三光子显微镜(3PM)两种。相对于2PM,3PM有两大优势:一是使用更长波段的激发光源,让激光在生物组织中有更长的衰减距离;二是通过更高阶的非线性激发,减少背景信号的强度。基于这些优势,3PM大幅提高了多光子显微成像的穿透深度和图像信噪比。然而,构造能同时激发多种荧光团的多色3PM远比2PM更有挑战性。一般来说,能同时观察绿色和红色荧光团的双色3PM需要两种不同的激发波长,分别为1300 nm和1700 nm。使用双波长光源不仅增加了总激发功率和损伤组织的风险,也增加了光学系统的复杂性。因此,发展单一激发波长的多色3PM在生命科学研究中具有重要的实际意义[1]。

科研界普遍认为,绿色和红色荧光团的吸收峰相去甚远,但荧光团的三光子吸收谱与单光子吸收谱并不完全一致。三光子截面的峰值相对其单光子吸收峰会蓝移数百纳米,这为单一波长同时激发绿色和红色荧光团提供了基础。

图1 溶液中Texas Red、SR 101、Alexa Fluor 546、DsRed、tdTomato、mCherry Qdot 605的单光子吸收谱、双光子及三光子吸收截面

图1表示一些常见荧光染剂的单光子吸收谱、双光子和三光子截面。以红色荧光团Texas Red为例,其单光子吸收峰位于590 nm,双光子截面与单光子吸收谱类似,而三光子截面峰位于420 nm,对应跃迁到更高的能级。这说明~1300 nm的脉冲也能对红色荧光团进行有效的三光子激发。如图2所示,当激发波长低于1260 nm时,荧光团仅激发双光子信号。随着激发波长逐渐红移,激发信号会混合双光子和三光子的荧光。当波长大于1340 nm,激发信号才以三光子荧光为主。

图2 Texas Red荧光信号强度与入射激光强度取对数后的斜率与激发波长的关系

图3是不同激发波长对Texas Red标记小鼠大脑血管的多光子图像。如图所示,随着波长从1220 nm到1340 nm,三光子荧光信号的比例逐渐上升,图像的信噪比也逐渐上升。1650 nm激发的三光子荧光图像相较于1340 nm信噪比有略微的下降,原因是1650 nm的三光子截面要低于1340 nm。

图3 Texas Red标记小鼠大脑血管的多光子图像

图4 在1340 nm激发下的多色三光子荧光图像。

图4 显示了单一1340 nm波段激发的多色三光子图像。其中GCaMP6标记小鼠大脑中的神经元、Texas Red标记血管,三倍频信号则主要观察红细胞和髓磷脂。由于所有通道均为三光子激发的过程,图像信噪比优越。

总而言之,基于1340 nm的新型三光子激发方案,不仅有出色的多色成像能力,还对常见的红色荧光分子有超过10倍的信号增强。这将为三光子显微镜在生命科学应用的拓展提供新的机遇。

参考文献

[1] Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Science Advances 7, eabf3531 (2021).

 

1作者:光波常 来源:通信界 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像