CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 测试仪表 >> 技术正文
 
一种电缆在线检测技术
[ 通信界 | 符建名 | www.cntxj.net | 2022/10/30 22:49:35 ]
 

【摘要】针对通信、控制等日益复杂的电子系统,提出了一种电缆在线检测技术方案。阐述了复杂电子系统中,电缆在线检测的技术方案、在线检测原理、方法与电路组成。为复杂电子系统的测试、维修,提出了一种全新的电缆在线检测方法。

【关键词】在线检测;电缆;电子系统

doi:10.3969/j.issn.1006-1010.2018.02.000      中图分类号:TN98      文献标志码:A      文章编号:1006-1010(2018)02-0000-00

引用格式:符建名. 一种电缆在线检测技术[J]. 移动通信, 2018,42(2): 00-00.

An On-Line Detection Technique for Cables

FU Jianming

(China Electronic Technology Group Corporation No.7 Research Institute, Guangzhou 510310, China)

[Abstract] In view of the increasingly complicated electronic systems such as communication and control, a cable on-line detection technique is proposed. This paper expounds the technical scheme, on-line detection principle, method and circuit composition of cable on-line detection in complex electronic system. In order to test and maintain complex electronic system, a new on-line detection method for cable is proposed. The invention has been authorized by the State Intellectual Property Office of the P.R.C, and the invention patent number is 2015103486035.

[Key words] on-line detection; cable; electronic system

1   引言

通信、控制等设备密集的电子系统中,设备间电缆的连接直接影响系统的工作性能。因此,在电子系统测试和维修中,如何采用简易的方法快速地判断电缆的故障具有重要意义。

判断电缆故障的通用方法是采用万用表的两根表笔分别接触电缆的两端进行测试,可直接判断电缆的故障。在线测试是指电缆的一端连接电子设备,测试器在电缆的另一端通过测试判断电缆的故障。目前可用于电缆在线测试的技术原理是电磁波反射原理。在实际应用中,由于制造成本和测试精度的限制,采用电磁波反射原理的设备一般只应用于长线传输的电缆故障检测。在一般的电子系统测试和维修中,电缆的开路或短路故障,通常采用万用表测试。采用万用表测试的方法有两个缺点:

(1)必须用万用表的两根表笔接触电缆两端。连接设备的电缆较长或其中一端不易拆卸或难以触及时,不能使用万用表测试。

(2)对于多芯线电缆的测试只能手动分别一根一根地测试,不能多芯线同时测试。

电磁波反射技术利用传播中的电磁波在介质发生变化时产生反射的原理,通过接收到反射信号的时间计算电缆端点到电缆断开处的距离来推断电缆开路故障。采用电磁波反射技术的缺点是:

(1)不能测试短路故障。

(2)制造成本高。

2   在线检测技术方案

2.1  需要解决的技术问题

在线检测技术所要解决的问题:

(1)连接设备的电缆较长或其中一端不易拆卸或难以触及时,在电缆的另一端通过在线测试即可判断电缆的故障及类型(开路或短路)。

(2)通过在线测试可判断多芯线电缆的故障,并同时显示故障电缆芯线号和故障类型(开路或短路)。

(3)用较简单和较容易实现的方案解决在线测试问题,降低制造成本。

2.2  电路组成与工作原理

(1)半导体器件P-N结的电容效应

纯净半导体材料有较高的电阻率,但构成器件的P-N结存在扩散电容和势垒电容。

扩散电容:P-N结扩散区内少数载流子电荷随外加电压的变化,可看成P-N结扩散区的电容效应。当电压增大,扩散区电荷量增加,相当于电容充电;当电压减小,扩散区电荷量减少,相当于电容放电。P-N结扩散电容为:

CD=gτp/2                           (1)

其中,g为电导,τp为少数载流子空穴的寿命。

势垒电容:P-N结空间电荷区也有电容效应,当P-N结正向电压增加时,P-N结的势垒高度下降,电场强度减小,空间电荷区宽度也减小。有P区的空穴和N区的电子流入空间电荷区,就相当于空间电荷区充电。当P-N结正向电压降低时,P-N结的势垒高度增加,电场强度加强,空间电荷区宽度也增大。有P区的空穴和N区的电子流出空间电荷区,就相当于空间电荷区放电。这种电容效应称为势垒电容。P-N结势垒电容为:

CT=εε0A/xm                         (2)

其中,xm为空间电荷区宽度,A为P-N结截面积。

(2)被测故障网络特征阻抗

精确计算被测故障网络的特征阻抗比较困难。电缆在线检测技术利用半导体器件的P-N结存在结电容,根据电子设备的两两引线之间对交流信号呈现的交流阻抗进行评估。

P-N结结电容因半导体材料、结面积和制造工艺等不同而不同。一般高频器件结电容较小,低频器件结电容较大,通常可在器件手册查到。例如,9018高频小功率三极管,截止频率达到1.1 GHz,结电容1.3 p。以结电容1.3 p进行计算,工作频率为100 kHz交流信号呈现的交流阻抗为:

Z=1/2πfC=1/(2×3.14×100×103×1.3×10-12)=1.2×106

即截止频率达到1.1 GHz的器件对频率为100 kHz交流信号呈现的交流阻抗约为1.2 MΩ。因此,对频率低于1 GHz的电路,交流阻抗按小于1.2 MΩ计算,对于更高频率的电路则选择更高的工作信号频率。

(3)在线检测技术工作原理与电路组成

被测电缆的两根芯线A1B1和A2B2如图1所示,其中C1为电缆A1B1中间任意的一点,C2为电缆A2B2中间任意的一点。本文中在线检测状态指电缆的一端(A1、A2端)连接检测仪器,另一端(B1、B2)按工作状态连接设备。Z为被测电缆所连接设备两端的交流等效阻抗。

由于半导体器件的PN结存在结电容,因此由电阻、电容、电感等电子元件和半导体器件组成的电子设备两两引线之间对交流信号呈现的交流阻抗等于1/2πfC,其中C为等效电容,f为信号频率。图1和图2所示Z为被测电缆所连接设备的交流等效阻抗。

电缆在线检测技术利用电子设备的两两引线之间对交流信号呈现的交流阻抗的原理,在设备两两引线之间发送一个交流信号,在两个引线之间串接一个测试基准电阻。利用信号在测试基准电阻的分压,通过比较器后产生一个高低电平。连线接通时输出高电平,驱动蜂鸣器产生提示音;当连线断开时输出低电平无提示音。电缆在线检测技术通过上述原理来判断电缆的通断。

在线检测技术原理框图如图2所示,图2中的R2即为图5的开关K打在R2位置时B、G两点间电路的交流等效电阻,R2ˊ即为图5中的开关K打在R2ˊ位置时B、G两点间电路的交流等效电阻(相对于不同芯线之间所连接设备的等效电阻而言,R2和R2ˊ的阻值相对固定,以下简称基准电阻R2和基准电阻R2ˊ)。在测试开路故障时,基准电阻R2的选择应足够大(本实列为1.8 MΩ),信号发生器频率的选择使交流等效阻抗Z=1/2πfC(C为等效电容)小于基准电阻R2,则分压后输出电压大于VA/2(VA为信号发生器输出的信号幅值)。比较器门限值取VA/2,比较器输出高电平,指示灯亮,有提示音输出。当电缆开路时Z无限大,分压后输出电压为0,比较器输出低电平,指示灯不亮,无提示音输出,由此即判断开路故障。

在测试短路故障时基准电阻R2ˊ的选择应足够小(本实列为20 Ω)。因此,只有等效阻抗小于20 Ω时(视为短路)分压后输出电压大于VA/2(VA为信号发生器输出的信号幅值),比较器输出高电平,指示灯亮,有提示音输出。否则当等效阻抗大于20 Ω时(视为不短路),分压后输出电压小于VA/2,比较器输出低电平,指示灯不亮,无提示音输出。由此即可判断短路故障。

在线检测技术方案的原理图由信号发生器电路、基准与分压整流电路、比较器电路、多路转接电路、显示电路、微处理器及控制电路组成。

为便于计算,信号发生器可采用正弦信号发生器电路产生正弦信号。但实际应用中采用了如图4所示的3个与非门组成的多谐震荡器来产生交流信号。其中,R1和C1的选择使振荡频率在25 kHz到100 kHz之间。信号发生器产生的信号为方波,方波含有基波、二次谐波、三次谐波等许多频率成分的波。根据傅里叶变换,组成方波的各次谐波中,三次谐波以后振荡幅度快速衰减。因此,在本电路的实际应用中可根据方波的振荡频率近似计算等效阻抗。

基准与分压整流电路由R2、R3、V1、C2组成。其中,R2、R2ˊ对基准电阻的影响最大,选择高精度金属电阻,精度为1%,R2阻值为1.8 M,R2ˊ阻值为20 Ω;R3、V1、C2组成整流采样电路,V1采用整流二极管1N4148,R3、C2根据信号频率选择。

比较器由V2、R4、R5组成。V2采用单电源运算放大器LM358,R4、R5根据信号幅度选择。

3   多芯电缆的在线检测

3.1  主要功能和技术指标

多芯电缆的在线检测(以64芯电缆为例),主要功能和技术指标如下:

(1)在线检测功能:电缆单端接入(另一端接设备)即可测试电缆的通断;

(2)显示功能:显示故障电缆芯线编号;

(3)电缆芯线小于或等于64芯。

3.2  多路转接控制

多路转接电路部分由4个16通道模拟开关和控制逻辑电路组成,其中模拟开关电路采用MAXIN的16通道模拟开关电路MAX4968。多路转接电路组成框图如图6所示。

微处理器及控制电路由51系列单片机及其外围电路组成,编程语言采用C51语言。

显示器采用LCD显示,提示音电路由蜂鸣器及驱动电路组成。

4   关键技术及实现途径

(1)交流阻抗分压采样检测技术

在线检测技术利用电子设备的两两引线之间对交流信号呈现的交流阻抗的原理,采用交流阻抗分压采样检测技术实现电缆开路、短路故障的在线检测。如图4所示电缆连接正常时,交流等效阻抗Z=1/2πfC,C为等效电容,适当选取信号频率使交流等效阻抗与基准电阻R2相当,则分压后输出电压约为VCC/2,比较器输出高电平,指示灯亮,有提示音输出。当电缆开路时Z无限大,分压后输出电压为0,比较器输出低电平,指示灯不亮,无提示音输出。由此即可判断开路故障。

(2)多路组合选择输入检测技术

本在线检测技术通过多路组合选择输入检测技术实现多芯线电缆的多芯线同时检测和短路故障检测。实现途径如下:

1)多芯线同时检测:如图5所示,通过多路模拟开关使多根芯线分别接入,分别检测,再由微处理器控制同时显示检测结果;

2)短路检测:通过多路模拟开关使多根芯线两两分别接入分别检测,再由微处理器控制进行组合逻辑判断两两芯线之间的短路故障。

5   比对测试结果

用交换机的三种接口对应的三根7芯、10芯、19芯的电缆做了比对测试。测试结果如表1所示。7芯、10芯、19芯在线测试结果与实际故障情况相符,符合率100%。7芯、10芯、19芯三种电缆,每根电缆在线测试平均测试时间小于1分钟。检测时间与拆卸电缆后检测缩短数十倍,甚至更多。

在线检测技术带来的有益效果是:

(1)在线检测技术在电缆的一端通过在线即可检测电缆的故障,减少设备测试或维修中拆卸设备的工作量;

(2)在线检测技术通过在线测试可判断多芯线电缆的故障,并同时显示故障电缆芯线号和故障类型,从而提高了电缆检测的效率;

(3)在线检测技术用较简单和较容易实现的方案解决在线测试的问题,降低了制造成本。

6   结束语

电缆在线检测技术为复杂电子系统的测试、维修,提出了一种全新的电缆在线检测方法。在车载、机载、船载等设备高度密集的电子系统中,特别是在处理应急事件的场合下测试或维修电子系统,需要快速检测电缆故障时,电缆在线检测意义重大。

参考文献:

[1] 董荔真,倪福卿,罗伟雄. 非线性电子线路分析基础[M]. 北京: 高等教育出版社, 1983.

[2] 浙江大学半导体器件教研室. 晶体管原理[M]. 北京: 国防工业出版社出版, 1980.

[3] 王渭滨. 万用表的工作原理[J]. 中国邮政, 1978(2).

[4] 刘勇. HP34401A万用表设计原理[J]. 仪表技术, 1994(5): 25-29.

[5] 眭肖钰,李依凡,金斌翔,等. 电力电缆故障检测技术与设备[J]. 电力设备, 2008(6): 77-79.

[6] 李建辉. 电力电缆故障检测方法与应用[J]. 河北电力技术, 2009(3): 36-38.

[7] 魏书宁,龚仁喜,刘珺. 电力电缆故障检测的方法与分析[J]. 计算技术与自动化, 2005(3): 124-126.

[8] 国家测绘总局测绘研究所情报室. 国外电磁波测距仪发展概况[J]. 测绘通报, 1975(1): 36-41.

[9] 宋建辉,袁峰,丁振良,等. 电磁波反射测长系统的设计[J]. 仪表技术与传感器, 2009(2): 87-88.

[10] 朱云华,艾芊,陆锋. 电力电缆故障测距综述[J]. 电力系统保护与控制, 2006,34(14): 81-88.

[11] 袁宇正,沈国健,潘正凤,等. 电磁波测距仪讲座(一)[J]. 测绘通报, 1977(2).★

作者简介

符建名:高级工程师,学士毕业于北京理工大学,现任职于中国电子科技集团公司第七研究所,主要研究方向为通信装备与系统。

 

1作者:符建名 来源:《移动通信》 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像