您现在的位置: 通信界 >> 通信线缆 >> 技术正文  
 
浅述多模光纤的演进之路
[ 通信界 / 孙梦珣 / www.cntxj.net / 2022/12/18 23:47:13 ]
 

 

前言:通信光纤根据其应用波长下传输模式数量的不同,分为单模光纤和多模光纤。由于多模光纤芯径较大,可以配合低成本光源使用,因此在短距离传输场景下有着极为广泛的应用,如数据中心、局域网等。随着近年来数据中心建设的高速发展,作为数据中心和局域网应用主流的多模光纤也迎来了春天,引起了人们的广泛关注。今天,我们就来聊一聊,多模光纤的发展历程。

按照标准ISO/IEC 11801规范,多模光纤分为OM1、OM2、OM3、OM4、OM5五个大类,其与IEC 60792-2-10的对应关系,如表1所示。其中OM1, OM2是指传统的62.5/125mm和50/125mm多模光纤; OM3、OM4和OM5是指新型的50/125mm万兆位多模光纤。

表1 标准对应关系

ISO/IEC 11801分类
OM1
OM2
OM3
OM4
OM5
芯径
50
62.5
50
62.5
50
50
50
IEC 60793-2-10分类对应关系
A1a.1
A1b
A1a.1
A1b
A1a.2
A1a.3
A1a.4

一、传统多模光纤

多模光纤的研发始于上个世纪七八十年代,早期的多模光纤包括很多尺寸种类,列入国际电工委(IEC)标准中的尺寸类型包括四种,芯包层直径分为50/125μm、62.5/125μm、85/125μm和100/140μm。由于芯包层尺寸大则制作成本高、抗弯性能差,而且传输模数量增多,带宽降低,因而较大芯包层尺寸的类型逐渐被淘汰,逐渐形成了两种主要的芯包层尺寸,分别是50/125μm和62.5/125μm。

在早期的局域网中,为了尽可能地降低局域网的系统成本,普遍采用价格低廉的LED作光源。由于LED输出功率低,发散角比较大,而50/125mm多模光纤的芯径和数值孔径都比较小,不利于与LED的高效耦合,不如芯径和数值孔径大的62.5/125mm多模光纤能使较多的光功率耦合到光纤链路中去,因此,50/125mm多模光纤在20世纪90年代中期以前不如62.5/125mm多模光纤那样得到广泛的应用。

随着局域网传输速率不断升级,自20世纪末以来,局域网向lGb/s速率以上发展,以LED作光源的62.5/125μm多模光纤仅仅几百兆的带宽逐渐不能满足要求。相比之下,50/125mm多模光纤数值孔径和芯径较小,传导模式也较少,因而有效地降低了多模光纤的模式色散,使得带宽得到了显著的增加,由于芯径较小,50/125mm多模光纤的制作成本也更低,因此重新得到了广泛的应用。

IEEE802.3z千兆位以太网标准中规定50/125mm多模和62.5/125mm多模光纤都可以作为千兆位以太网的传输介质使用。但对新建网络,一般首选50/125mm多模光纤。

二、激光优化的多模光纤

随着技术的发展,850nm VCSEL(垂直腔体表面发射激光器)出现。VCSEL激光器比长波长激光器价格更低,同时能够提高网络速率,因此获得了广泛应用。由于两种发光器件的不同,必须对光纤本身进行改造,以适应光源的变化。

为了VCSEL激光器需要,国际标准化组织/国际电工委员会(ISO/IEC)和美国电信工业联盟(TIA)联合起草了新一代纤芯为50mm的多模光纤的标准。ISO/IEC在其所制定的新的多模光纤等级中将新一代多模光纤划为OM3类别(IEC标准为A1a.2),即为激光优化的多模光纤。

后续出现的OM4光纤,实际是OM3多模光纤的升级版。OM4标准与OM3光纤相比,只是在光纤带宽指标做了提升。即OM4光纤标准在850nm波长的有效模式带宽(EMB)和满注入带宽(OFL)相比OM3 光纤都做了提高。如下表2所示。

表2 OM3和OM4光纤对比

光纤类型
满注入带宽(MHz·km)
有效模式带宽(MHz·km)
850nm
850nm
OM3
≥1500
≥2000
OM4
≥3500
≥4700

多模光纤内传输模式众多,随之还带来光纤抗弯曲性能的问题,当光纤弯曲时,高阶的模式极易泄露出去,造成信号的损失,即光纤的弯曲损耗。随着室内应用场景不断增多,多模光纤在狭窄环境下的布线,对其抗弯曲性能也提出了更高要求。

不同于单模光纤简单的折射率剖面结构,多模光纤的折射率剖面十分复杂,需要极为精细的折射率剖面设计与制作工艺。在目前国际主流的四大预制棒制备工艺中,制备多模光纤最为精密的是等离子体化学气象沉积(PCVD)工艺,以长飞公司为代表。该工艺不同于其他工艺,其沉积层数多达几千层,且沉积时每层仅约1微米的厚度,能够实现超精细的折射率曲线控制,从而实现高带宽。

通过对多模光纤折射率剖面的优化,现在的弯曲不敏感多模光纤,其抗弯性能有了显著提升。

三、新型多模光纤(OM5)

OM3光纤和OM4光纤,都是主要应用于850nm波段的多模光纤。随着传输速率的不断提升,仅仅单通道的波段设计,会带来越来越密集的布线成本,随之的管理维护成本也相应升高。因此,技术人员尝试将波分复用概念引入多模传输系统中,如果能够在一根光纤上传输多个波长,则相应的并行光纤根数和铺设、维护成本都能大幅下降。在此背景下,OM5光纤应运而生。

OM5多模光纤,是在OM4光纤基础上,扩宽了高带宽通道,其能够支持850nm~950nm波段的传输应用。目前主流的应用,是SWDM4和SR4.2设计。SWDM4是4个短波的波分复用,分别是850nm、880nm、910nm和940nm。这样在一根光纤可以支撑此前4根并行光纤的业务。SR4.2是两波分复用,主要用于单纤双向技术。OM5能够与性能好成本低的VCSEL激光器配合,以更好的满足数据中心等短距离通信。下表3是OM4和OM5光纤的主要带宽指标对比。

表3 OM4和OM5光纤带宽指标对比

光纤类型
满注入带宽(MHz·km)
有效模式带宽(MHz·km)
850nm
953nm
850nm
953nm
OM4
≥3500
无要求
≥4700
无要求
OM5
≥3500
≥1850
≥4700
≥2470

目前,OM5光纤作为一种最新型的高端多模光纤,已有了许多应用案例。其中最大的一个商业案例,是长飞公司和中国铁路总公司主数据中心的OM5商用案例。该数据中心瞄准了OM5光纤在SR4.2上的波分系统应用优势,使用最低的成本,实现了最大容量的通信,也为未来进一步升级速率做了准备,未来提升速率至100Gb/s乃至400Gb/s,或者扩宽波段应用时,可以不再更换光纤,能够显著降低未来升级成本。

总结:随着应用的需求不断提高,多模光纤在朝着低弯曲损耗,高带宽,多波长复用的方向发展,其中,最具有应用潜力的,当属OM5光纤,其具有目前多模光纤最优的性能,为未来100Gb/s和400Gb/s的多波长系统提供了有力的光纤解决方案。此外,为适应高速率,高带宽,低成本的数据中心通信的要求,新型的多模光纤,如单多模通用光纤,也正在研发中。未来,长飞公司将和业内同行一道推出更多的新型多模光纤解决方案,给数据中心和光纤互联带来新的突破和更低的成本。 

 

作者:孙梦珣 合作媒体:通信界 编辑:顾北

 

 

 
 热点技术
普通技术 网络认知对抗的中文学术研究历史演进研究
普通技术 境外认知战作战力量及技术装备综述
普通技术 我国当前面临的主要网络认知威胁分析
普通技术 提升工业和硬件安全!我国牵头提出的两项网安国际标准发布
普通技术 6G通信感知一体化网络的感知算法研究与优化
普通技术 多地址的时间型区块链隐蔽通信方法研究
普通技术 基于CHAN 的改进卡尔曼滤波室内定位算法
普通技术 基于吸收马尔可夫链攻击图的网络攻击分析方法研究
普通技术 短波通信接入网广域协作资源分配算法
普通技术 基于子载波补给索引调制的OFDM 传输方案
普通技术 基于随机Transformer 的多维时间序列异常检测模型
普通技术 面向高混响环境的欠定卷积盲源分离算法
普通技术 移动边缘计算网络下基于静态贝叶斯博弈的入侵响应策略研究
普通技术 基于IRS辅助的MIMO车联网系统联合波束成形设计
普通技术 基于IOC-CSMP 的OFDM 系统稀疏信道快速重构算法
普通技术 频控阵MIMO雷达的目标数与方位参数联合估计方法
普通技术 SPS 结构大规模S 盒设计与分析
普通技术 意图抽象与知识联合驱动的6G 内生智能网络架构
普通技术 软件定义网络抗拒绝服务攻击的流表溢出防护
普通技术 数据安全中台构筑企业数据生命线
  版权与免责声明: ① 凡本网注明“合作媒体:通信界”的所有作品,版权均属于通信界,未经本网授权不得转载、摘编或利用其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:通信界”。违反上述声明者,本网将追究其相关法律责任。 ② 凡本网注明“合作媒体:XXX(非通信界)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。 ③ 如因作品内容、版权和其它问题需要同本网联系的,请在一月内进行。
通信视界
吴春波:华为如何突破美国6次打压的逆境?
刘烈宏:以数字化网络化智能化助力数字经济与
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提升
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大模
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶段
普通对话 工信部副部长张云明:我国算力总规模已居世界
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机遇
普通对话 张志成:继续加强海外知识产权保护工作 为助力
普通对话 吴春波:华为如何突破美国6次打压的逆境?
普通对话 刘烈宏:以数字化网络化智能化助力数字经济与
普通对话 消息称微软将把OpenAI人工智能技术整合至Offi
普通对话 中国电信董事长柯瑞文:数字科技引领新消费
普通对话 中国移动董事长杨杰出席GSMA创新论坛并作主旨
普通对话 中国信科何书平:“一体两翼”大力支撑数字政
普通对话 中兴徐子阳:泛在协同,筑“算网”坦途
普通对话 中国移动陈国:智慧中台对外输出数百项高价值
普通对话 中兴通讯总裁徐子阳:数贯东西,融达天下,共
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
邬贺铨院士解读ChatGPT等数字技术热点
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 中科院钱德沛:计算与网络基础设施的全面部署
普通对话 工信部赵志国:我国算力总规模居全球第二 保持
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开展
普通对话 华为云Stack智能进化,三大举措赋能政企深度用
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、低
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号的
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假计
普通对话 新一代载人运载火箭发动机研制获重大突破