CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 知本院 >> 文章正文
 
微处理器简史
[ 通信界 | blogchina | www.cntxj.net | 2004/8/10 ]
 

● 微处理器简史 |Stephen White编写的微处理器发展历史
1971 - November 15 First microprocessor, the 4004, developed by Marcian E. Hoff for Intel, was released. It contains the equivalent of 2300 transistors and was a 4 bit processor. It is capable of around 60,000 Interactions per second (0.06 MIPs), running at a clock rate of 108KHz.
1972 - April 1 8008 Processor released by Intel.
1974 - April 1 Introduction of 8080. An 8 Bit Microprocessor from Intel.
1976? Introduction of 8085.
1976 Z80 released by Zilog, and the basis for the computer boom in the early 1980s. It was an 8 bit microprocessor. CP/M was written for the Z80 as well as software like Wordstar and dBase II - and it formed the basis for the Sinclair Spectrum of 1982.
1976 6502, 8 bit microprocessor developed and later chosen to equip the Apple II computer. Also fitted in the original Acorn machine, BBC Micro, Commodore 64 and Commodore PET.
1978 - June 8 Introduction of 8086 by Intel, the first commercially successful 16 bit processor. It was too expensive to implement in early computers, so an 8 bit version was developed (the 8088), which was chosen by IBM for the first IBM PC. This ensured the success of the x86 family of processors that succeeded the 8086 since they and their clones are used in every IBM PC compatible computer.

The available clock frequencies are 4.77, 8 and 10 MHz. It has an instruction set of about 300 operations. At introduction the fastest processor was the 8 MHz version which achieved 0.8 MIPs and contained 29,000 transistors.

1979 - June 1 Introduction of 8088, a step down from the 8086 as it contains just an 8 bit data bus - but this make it cheaper to implement in computers.
1979 The 68000 Microprocessor launched by Motorola. Used by Apple for the Macintosh and by Atari for the ST series. Later versions of the processor include the 68020 used in the Macintosh II.
1981? Introduction of 80186/80188. These are rarely used on PCs as they incorporate a built in DMA and timer chip - and thus have register addresses incompatible with other IBM PCs.
1982 - February 1 80286 Released. It supports clock frequencies of up to 20 MHz and implements a new mode of operation, protected mode - allowing access to more memory (up to 16 Mbytes compared to 1 MB for the 8086. The virtual address space can appear to be up to 1 GB through the use of virtual memory). It includes an extended instruction set to cope with this new mode of operation.

At introduction the fastest version ran at 12.5 MHz, achieved 2.7 MIPs and contained 134,000 transistors.

1985 - October 17 80386 DX released. It supports clock frequencies of up to 33 MHz and can address up to 4 GB of memory and virtual memory of up to 64 TERABYTES! It also includes a bigger instruction set than the 80286.

At the date of release the fastest version ran at 20 MHz and achieved 6.0 MIPs. It contained 275,000 transistors.

1988 - June 16 80386 SX released as a cheaper alternative -to the 80386 DX. It had a narrower (16 bit) time multiplexed bus. This reduction in pins, and the easier integration with 16 bit devices made the cost savings.
1989 - April 10 80486 DX released by Intel. It contains the equivalent of about 1.2 million transistors. At the time of release the fastest version ran at 25 MHz and achieved up to 20 MIPs.

Later versions, such as the DX/2 and DX/4 versions achieved internal clock rates of up to 100 MHz.

1991 - April 22 80486 SX released as cheaper alternative to 80486 DX - the key difference being the lack of an integrated F.P.U.
1993 - March 22 Intel Pentium released. At the time it was only available in 60 & 66 MHz versions which achieved up to 100 MIPs, with over 3.1 million transistors.
1994 - March 7 Intel Release the 90 & 100 MHz versions of the Pentium Processor.
1994 - October 10 Intel Release the 75 MHz version of the Pentium Processor.

1995 - March 27 Intel release the 120 MHz version of the Pentium processor.
1995 - June 1 Intel release the 133 MHz version of the Pentium processor.
1995 - November 1 Pentium Pro released. At introduction it achieved a clock speed of up to 200 MHz (there were also 150, 166 and 180 MHz variants released on the same date), but is basically the same as the Pentium in terms of instruction set and capabilities. It achieves 440 MIPs and contains 5.5 million transistors - this is nearly 2400 times as many as the first microprocessor, the 4004 - and capable of 70,000 times as many instructions per second.
1996 - January 4 Intel release the 150 & 166 MHz versions of the Pentium Processor. They contain the equivalent of over 3.3 million transistors.
1996 - October 6 Intel release the 200 Mhz version of the Pentium Processor.
1997 - January 8 Intel released Pentium MMX (originally 166 and 200 Mhz versions), for games and multimedia enhancement. To most people MMX is simply another 3-letter acronym and people wearing coloured suits on Intel ads, and to programmers in meant an even further expanded instruction set that provides, amongst other functions, enhanced 64-bit support - but software needs to be specially written to work with the new functions. A major rival clone, the AMD-K6-MMX containing a similar instruction set, caused a legal challenge from Intel on the right to use the trademarked name MMX - it was not upheld.
1997 - May 7 Intel Release their Pentium II processor (233, 266 and 300 Mhz versions). It featured, as well as an increased instruction set, a much larger on-chip cache.
1997 - June 2 Intel release the 233 MHz Pentium MMX.
1998 - February Intel released of 333 MHz Pentium II processor. Code-named Deschutes these processors use the new 0.25 micro manufacturing process to run faster and generate less heat than before.
1999 - Feb 22 AMD release K6-III 400MHz version, 450 to OEMS. In some tests it outperforms soon-to-be released Intel P-III. It contains approximately 23 million transistors, and is based on 100Mhz super socket 7 motherboards, an improvement on the 66MHz buses their previous chips were based on. This helps it’s performance when compared to Intel’s Pentium II - which also uses a 100MHz bus speed.
1999 - Nov 29 AMD release Athlon 750MHz version.
2000 - Jan 19 Transmeta launch their new ’Crusoe’ chips. Designed for laptops these prvoide comparible performance to the mid-range Pentium II chips, but consume a tiny fraction of the power. They are a new and exciting competitor to Intel in the x86 market.
2000 - March 6 AMD Release the Athlon 1GHz.
2000 - March 8 Intel release very limited supplies of the 1GHz Pentium III chip.

 

1作者:blogchina 来源:blogchina 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像