CNTXJ.NET | 通信界-中国通信门户 | 通信圈 | 通信家 | 下载吧 | 说吧 | 人物 | 前瞻 | 智慧(区块链 | AI
 国际新闻 | 国内新闻 | 运营动态 | 市场动态 | 信息安全 | 通信电源 | 网络融合 | 通信测试 | 通信终端 | 通信政策
 专网通信 | 交换技术 | 视频通信 | 接入技术 | 无线通信 | 通信线缆 | 互联网络 | 数据通信 | 通信视界 | 通信前沿
 智能电网 | 虚拟现实 | 人工智能 | 自动化 | 光通信 | IT | 6G | 烽火 | FTTH | IPTV | NGN | 知本院 | 通信会展
您现在的位置: 通信界 >> 光通信 >> 技术正文
 
光纤通信中的色散补偿技术及其应用
[ 通信界 | 徐志军 | www.cntxj.net | 2019/11/18 11:16:13 ]
 

  摘要:近年来随着信息技术的不断发展,人们对数据传输速度、传输距离及传输质量的要求越来越高,而光纤通信得益于自身高速长距离的传输优势,在生产生活中的诸多领域得到了较为广泛的应用。随着光纤通信技术的发展,色散已经成为制约光纤通信进一步发展的重要因素,本文主要针对光纤通信中的色散补偿技术及其应用进行了简要的分析和阐述。

  关键词:光纤通信色散补偿应用

  1引言

  二十一世纪以来,随着信息化时代的到来,越来越多的数据以数字化的形式进行存储与传输,庞大体量的数据使得人们对通信的速度和距离都有了更高的需求,光纤通信得益于自身高速长距离的传输优势,逐步成为长距离大数据量的主要传输方式。随着光纤通信的推广与应用,光纤通信的数据传输量不断增长,为了解决能耗问题,光纤放大器等开始在光纤通信中得到应用,但在解决光纤通信中损耗问题的同时,却也放大了色散的影响,使得色散已经成为制约光纤通信的重要影响因素。本文主要针对光纤通信中的色散问题,简要分析了色散补偿技术,并对其实际应用进行了简要的阐述。

  2光纤通信中的色散现象

  在光纤通信中,作为信息传输载体的并不是单色光,而是多种不同波长的光的集合,由于不同波长的光在传输介质中的折射率不同,传输速度也不同,这就导致光脉冲被展宽,形成了色散。光纤通信作为一种数字化的通信方式,脉冲的展宽将导致脉冲间的交叠,使得接收机难以将两个脉冲准确地区分出来,从而产生了严重的码间干扰,误码率大大提高,不利于光纤通信的质量,并且随着传输距离的增大,色散现象不断加剧,严重制约了光纤通信长距离高质量传输的优势。

  为了避免脉冲展宽引起的码间重叠,增大脉冲间距虽然能避免脉冲间的干扰问题,但通信容量与传输速度将大大降低,不利于通信带宽的充分利用,在一定程度上也制约了传输距离,不利于光纤技术的发展。

  3光纤通信中的色散补偿技术

  由于光纤通信中的色散现象严重制约了光纤通信技术的发展与应用,因此需要对其进行补偿,根据补偿方式与原理的不同,可以将色散补偿分为光色散补偿、电色散补偿以及光电色散补偿三类。

  3.1光色散补偿

  光色散补偿重要利用光学器件在光域对色散现象进行补偿,一般来说根据补偿器件与方式的不同,又可以分为以下三种:

  3.1.1色散补偿光纤

  色散补偿光纤是一种应用较为广泛、较为成熟的无源补偿器件,其可以安装在光纤的任意位置,利用补偿光纤的特有光学形式对色散进行补偿,具有较好的适应性与兼容性,在长距离传输光纤的色散补偿中,由于长距离传输造成的能量损耗,一般需要在补偿光纤后增加光放大器以保证通信的质量。色散补偿光纤对温度变化较为敏感,其具有一定的可变性,在不同条件下的补偿效果不同,因此需要增设自适应补偿模块对其进行管理与控制。

  3.1.2啁啾光纤光栅

  啁啾光纤光栅作为一种补偿系数较大的色散补偿方式,可以采用尽可能少的补偿模块实现较好的补偿效果,对节约补偿成本有着积极的意义。当不同频率的光穿过啁啾光纤光栅时,会产生反射导致不同的时延,这就使得啁啾光纤光栅对色散产生的辐射噪声具有较强的抑制作用,从而实现了对色散的补偿。啁啾光纤光栅的适应性也较强,能够在不同条件的传输光纤中得到应用,补偿方式简便易行,得到了较为广泛的应用。

  3.1.3中点谱反转法

  为了彻底避免光纤通信中的色散现象,采用零色散的传输光纤成为人们的解决思路,但由于领色散光纤的性质,产生的四波混频现象将严重影响正常的光纤通信功能,中点谱反转法成为解决这一问题的重要手段。中点谱反转法通过光纤通信中色散的相互抵消实现色散较好的补偿,但由于自相位的调节容易产生失真的现象,同时补偿成本也较高,因此与其他两种光色散补偿方式相比,这种补偿方式的应用相对较少。

  3.2电色散补偿

  与光色散补偿方式不同,电色散补偿主要应用在接收端而不是传输过程,主要利用光纤通信中的色散特征对传输数据进行处理,从而减少码间的干扰,提高光纤通信的传输质量,与光色散补偿相比,其成本优势更大。

  3.2.1线性均衡技术

  线性均衡技术就是将色散造成的脉冲展宽引起的码间干扰信号视为线性干扰信号,通过观测数据利用横截滤波器增加反向数值信号抵消干扰信号,从而实现色散的补偿。这种横截滤波器石油不同时延不同权重的抽头组成的组合滤波器,通过对码间干扰信号的估计调整抽头的权重,进而实现线性均衡,达到色散补偿的效果。线性均衡器原理简单结构轻巧,得到了较为广泛的应用,但随着抽头数目的增多,冗余数据会导致均衡器对噪声产生放大作用,不利于光线中信号的传输。

  3.2.2判决反馈均衡技术

  判决反馈均衡技术较好地解决了线性均衡技术存在的噪声放大问题,其通过两个横向滤波器的级联,一个用于线性均衡处理,另一个负责将均衡结果反馈至判决器进行判决。双滤波器的均衡方式使其具有一定的记忆功能,能够根据已有的判决信息自适应调整后续判决门限,从而保证在噪声干扰下,能够对码间干扰具有较好地检测的分割效果。

  3.2.3最大似然均衡技术

  最大似然均衡技术具有均衡与判决功能,其通过利用数据序列中码间的相关特性,将整个序列视为一个统一的整体进行处理,从而有效地抑制了噪声的干扰,提高了对色散引起的码间干扰的均衡效果,具有较强的适应性。尽管最大似然均衡技术具有较好的均衡效果,但其均衡器设备成本较高,因此在实际中应用较少,只在一些对均衡效果要求较高且对成本要求较低的条件下得到应用。

  4光纤通信中色散补偿技术的应用

  光色散补偿从色散产生的物理本质上对其进行了抑制和补偿,具有较好的适应能力和补偿效果,在长距离光纤通信中得到了较为广泛的应用,本文主要针对基于色散补偿光纤的色散补偿技术进行了简要的分析和阐述。

  4.1色散补偿原理

  根据色散的性质不同,可以将色散分为正色散与负色散,两者对光脉冲有着不同的影响。正色散能够展宽光脉冲,是造成码间干扰的重要原因,而负色散则压缩光脉冲,这对光纤通信而言有着积极的意义,因此对色散的补偿主要是指对正色散的补偿。

  以常规的G.652单模光纤为例,光信号其在1.55附近将产生正色散,造成码间干扰,而色散补偿光纤由于不同的光纤材料,光信号在1.55附近将产生较高的负色散,通过常规光纤与色散补偿光纤的级联,能够利用色散补偿光纤的负色散补偿常规光纤的正色散,从而实现光纤通信中色散的补偿,校正脉冲展宽效应及带来的码间干扰,大大提高光纤通信的质量。

  4.2色散补偿系统设计

  色散补偿系统的结构如图1所示,根据色散程度的计算,在常规光纤中增设相应长度的色散补偿光纤,从而实现了色散造成的脉冲展宽的校正,并通过放大器提高了光纤通信的传输速度与传输效率。

  通过图1可以看出,光源信号经过常规光纤的传输后,正色散使得脉冲发生了明显的展宽,形成了严重的码间干扰,严重影响了光纤通信的质量。经过色散补偿光纤负色散的补偿,脉冲发生了明显的收窄,避免了脉冲间的交叠问题,有效解决了码间干扰,取得了较好的色散补偿效果。

  首先,色散补偿光纤作为一种无源器件,使其在配置过程中可以不考虑对其他器件的影响,配置策略更为灵活,可以布置在光纤传输链路的任意位置进行补偿;其次色散补偿光纤与常规光纤的级联操作较为便捷;此外色散补偿光纤的补偿能力较强,对于长距离光纤通信的色散补偿具有一定的优势。

  5结论

  随着光纤通信技术的不断发展与应用,色散已经成为制约其通信质量与通信效率的重要因素,色散导致的脉冲展宽将造成严重的码间干扰,对数据的传输有着不利的影响。本文主要针对光纤通信中的色散补偿技术进行了简要的分析,并对色散补偿光纤的应用及设计进行了简要的阐述。相信随着光纤通信技术的不断成熟,其将在长距离高速通信中发挥更为重要的作用。

  参考文献
  [1]赵怀罡.光传输系统中色散补偿问题的探讨[J].光通信研究,2010,3(02).
  [2]李任新.长距离光纤传输放大器与色散补偿技术探讨[J].通讯世界,2016,1(05).
  [3]姜晋霄.光纤通信技术发展的现状及前景分析[J].无线互联科技,2016,18(03).
  [4]李东瑾等.基于电学补偿的频率光纤传输系统设计[J].光通信技术,2016,6(05).

 

1作者:徐志军 来源:通信界 编辑:顾北

 

声明:①凡本网注明“来源:通信界”的内容,版权均属于通信界,未经允许禁止转载、摘编,违者必究。经授权可转载,须保持转载文章、图像、音视频的完整性,并完整标注作者信息并注明“来源:通信界”。②凡本网注明“来源:XXX(非通信界)”的内容,均转载自其它媒体,转载目的在于传递更多行业信息,仅代表作者本人观点,与本网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。③如因内容涉及版权和其它问题,请自发布之日起30日内与本网联系,我们将在第一时间删除内容。 
热点动态
普通新闻 中信科智联亮相2023中国移动全球合作伙伴大会
普通新闻 全球首个基于Data Channel的新通话商用网络呼叫成功拨通
普通新闻 中国联通:以优质通信服务 助力“一带一路”共建繁华
普通新闻 杨杰:未来五年,智算规模复合增长率将超过50%
普通新闻 长沙电信大楼火灾调查报告发布:系未熄灭烟头引燃,20余人被问责
普通新闻 邬贺铨:生态短板掣肘5G潜能发挥,AI有望成“破局之剑”
普通新闻 工信部:加大对民营企业参与移动通信转售等业务和服务创新的支持力
普通新闻 摩尔线程亮相2023中国移动全球合作伙伴大会,全功能GPU加速云电脑体
普通新闻 看齐微软!谷歌表示将保护用户免受人工智能版权诉讼
普通新闻 联想王传东:AI能力已成为推动产业升级和生产力跃迁的利刃
普通新闻 APUS李涛:中国的AI应用 只能生长在中国的大模型之上
普通新闻 外媒:在电池竞赛中,中国如何将世界远远甩在后面
普通新闻 三星电子预计其盈利能力将再次下降
普通新闻 报告称华为5G专利全球第1 苹果排名第12
普通新闻 党中央、国务院批准,工信部职责、机构、编制调整
普通新闻 荣耀Magic Vs2系列正式发布,刷新横向大内折手机轻薄纪录
普通新闻 GSMA首席技术官:全球连接数超15亿,5G推动全行业数字化转型
普通新闻 北京联通完成全球首个F5G-A“单纤百T”现网验证,助力北京迈向万兆
普通新闻 中科曙光亮相2023中国移动全球合作伙伴大会
普通新闻 最高补贴500万元!哈尔滨市制定工业互联网专项资金使用细则
通信视界
邬贺铨:移动通信开启5G-A新周期,云网融合/算
普通对话 中兴通讯徐子阳:强基慧智,共建数智热带雨
普通对话 邬贺铨:移动通信开启5G-A新周期,云网融合
普通对话 华为轮值董事长胡厚崑:我们正努力将5G-A带
普通对话 高通中国区董事长孟樸:5G与AI结合,助力提
普通对话 雷军发布小米年度演讲:坚持做高端,拥抱大
普通对话 闻库:算网融合正值挑战与机遇并存的关键阶
普通对话 工信部副部长张云明:我国算力总规模已居世
普通对话 邬贺铨:我国互联网平台企业发展的新一轮机
普通对话 张志成:继续加强海外知识产权保护工作 为助
普通对话 吴春波:华为如何突破美国6次打压的逆境?
通信前瞻
亨通光电实践数字化工厂,“5G+光纤”助力新一
普通对话 亨通光电实践数字化工厂,“5G+光纤”助力新
普通对话 中科院钱德沛:计算与网络基础设施的全面部
普通对话 工信部赵志国:我国算力总规模居全球第二 保
普通对话 邬贺铨院士解读ChatGPT等数字技术热点
普通对话 我国北方海区运用北斗三号短报文通信服务开
普通对话 华为云Stack智能进化,三大举措赋能政企深度
普通对话 孟晚舟:“三大聚力”迎接数字化、智能化、
普通对话 物联网设备在智能工作场所技术中的作用
普通对话 软银研发出以无人机探测灾害被埋者手机信号
普通对话 AI材料可自我学习并形成“肌肉记忆”
普通对话 北斗三号卫星低能离子能谱仪载荷研制成功
普通对话 为什么Wi-Fi6将成为未来物联网的关键?
普通对话 马斯克出现在推特总部 收购应该没有悬念了
普通对话 台积电澄清:未强迫员工休假或有任何无薪假
普通对话 新一代载人运载火箭发动机研制获重大突破
推荐阅读
Copyright @ Cntxj.Net All Right Reserved 通信界 版权所有
未经书面许可,禁止转载、摘编、复制、镜像